Skip to main content

Advertisement

Log in

Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium silicate cements have been considered as alternative bone substitutes owing to its extraordinary bioactivity and osteogenicity. Unfortunately, the major disadvantage of the cements was the slow degradation rate which may limit the efficiency of bone regeneration. In this study, we proposed a facile method to synthesize degradable calcium silicate cements by incorporating strontium into the cements through solid-state sintering. The effects of Sr incorporation on physicochemical and biological properties of the cements were evaluated. Although, our findings revealed that the incorporation of strontium retarded the hardening reaction of the cements, the setting time of different cements (11–19 min) were in the acceptable range for clinical use. The presence of Sr in the CS cements would hampered the precipitation of calcium phosphate products on the surface after immersion in SBF, however, a layer of precipitated calcium phosphate products can be formed on the surface of the Sr-CS cement within 1 day immersion in SBF. More importantly, the degradation rate of the cements increased with increasing content of strontium, consequentially raised the levels of released strontium and silicon ions. The elevated dissolving products may contribute to the enhancement of the cytocompatibility, alkaline phosphatase activity, osteocalcin secretion, and mineralization of human Wharton’s jelly mesenchymal stem cells. Together, it is concluded that the strontium-incorporated calcium silicate cement might be a promising bone substitute that could accelerate the regeneration of irregularly shaped bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shen X, Ma P, Hu Y, Xu G, Xu K, Chen W, et al. Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. J Mater Chem B. 2016;4:1423–36.

    CAS  Google Scholar 

  2. Huang MH, Kao CT, Chen YW, Hsu TT, Shieh DE, Huang TH, Shie MY. The synergistic effects of chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro. J Mater Sci: Mater Med. 2015;26:161.

    Google Scholar 

  3. Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci: Mater Med. 2010;21:1649–54.

    CAS  Google Scholar 

  4. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42:129–38.

    CAS  Google Scholar 

  5. Boanini E, Torricelli P, Gazzano M, Bella Della E, Fini M, Bigi A. Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials. 2014;35:5619–26.

    CAS  Google Scholar 

  6. Zhang L, Huang X, Han Y. Formation mechanism and cytocompatibility of nano-shaped calcium silicate hydrate/calcium titanium silicate/TiO2 composite coatings on titanium. J Mater Chem B. 2016;4:6734–45.

    CAS  Google Scholar 

  7. Costa F, Sousa Gomes P, Fernandes MH. Osteogenic and angiogenic response to calcium silicate-based endodontic sealers. J Endod. 2016;42:113–9.

    Google Scholar 

  8. Chen YW, Hsu TT, Wang K, Shie MY. Preparation of the fast setting and degrading Ca-Si-Mg cement with both odontogenesis and angiogenesis differentiation of human periodontal ligament cells. Mater Sci Eng C Mater Biol Appl. 2016;60:374–83.

    CAS  Google Scholar 

  9. Chen YW, Ho CC, Huang TH, Hsu TT, Shie MY. The ionic products from mineral trioxide aggregate–induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway. J Endod. 2016;42:1062–9.

    Google Scholar 

  10. Yoldaş SE, Bani M, Atabek D, Bodur H. Comparison of the potential discoloration effect of bioaggregate, biodentine, and white mineral trioxide aggregate on bovine teeth: in vitro research. J Endod. 2016;42:1815–8.

    Google Scholar 

  11. Chen YW, Yeh CH, Shie MY. Stimulatory effects of the fast setting and degradable Ca–Si–Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells. J Mater Chem B. 2015;3:7099–108.

    CAS  Google Scholar 

  12. Huang MH, Shen YF, Hsu TT, Huang TH, Shie MY. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol. Mater Sci Eng C Mater Biol Appl. 2016;65:1–8.

    CAS  Google Scholar 

  13. Bellucci D, Sola A, Anesi A, Salvatori R, Chiarini L, Cannillo V. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater Sci Eng C Mater Biol Appl. 2015;51:196–205.

    CAS  Google Scholar 

  14. Kao CT, Huang TH, Chen YJ, Hung CJ, Lin CC, Shie MY. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Mater Sci Eng C Mater Biol Appl. 2014;43:126–34.

    CAS  Google Scholar 

  15. Zhang W, Zhao F, Huang D, Fu X, Li X, Chen X. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration. ACS Appl Mater Interfaces. 2016;8:30747–58.

    CAS  Google Scholar 

  16. John Ł, Podgórska M, Nedelec JM, Cwynar-Zając Ł, Dzięgiel P. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells. Mater Sci Eng C Mater Biol Appl. 2016;68:117–27.

    CAS  Google Scholar 

  17. Zhu H, Zhai D, Lin C, Zhang Y, Huan Z, Chang J, Wu C. 3D plotting of highly uniform Sr5(PO4)2SiO4 bioceramic scaffolds for bone tissue engineering. J Mater Chem B. 2016;4:6200–12.

    CAS  Google Scholar 

  18. Zhang Y, Wei L, Chang J, Miron RJ, Shi B, Yi S, Wu C. Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J Mater Chem B. 2013;1:5711–22.

    CAS  Google Scholar 

  19. Zhang Y, Cui X, Zhao S, Wang HC, Rahaman MN, Liu Z, et al. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. ACS Appl Mater Interfaces. 2015;7:2393–403.

    CAS  Google Scholar 

  20. Huang CY, Huang TH, Kao CT, Wu YH, Chen WC, Shie MY. Mesoporous calcium silicate nanoparticles with drug delivery and odontogenesis properties. J Endod. 2017;43:69–76.

    Google Scholar 

  21. Cheng YL, Chen YW, Wang K, Shie MY. Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography. J Mater Chem B. 2016;4:6307–15.

    CAS  Google Scholar 

  22. Lin K, Xia L, Li H, Jiang X, Pan H, Xu Y, et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013;34:10028–42.

    CAS  Google Scholar 

  23. Gou Z, Chang J, Zhai W, Wang J. Study on the self-setting property and the in vitro bioactivity of beta-Ca2SiO4. J Biomed Mater Res B Appl Biomater. 2005;73:244–51.

    Google Scholar 

  24. Gupta SK, Nigam S, Yadav AK, Mohapatra M, Jha SN, Majumder C, et al. An insight into local environment of lanthanide ions in Sr2SiO4:Ln (Ln = Sm, Eu and Dy). New J Chem. 2015;39:6531–9.

    CAS  Google Scholar 

  25. Zhang J, Qiu Y, Huang M, Zheng H, Yanagisawa K. Accelerated formation of strontium silicate by solid-state reaction in NaCl–H2O(v) system at lower temperature. Appl Surf Sci. 2015;347:57–63.

    CAS  Google Scholar 

  26. Zhang Z, Scherer GW, Bauer A. Morphology of cementitious material during early hydration. Cem Concr Res. 2018;107:85–100.

    Google Scholar 

  27. Reginster JY, Lecart MP, Deroisy R, Lousberg C. Strontium ranelate: a new paradigm in the treatment of osteoporosis. Expert Opin Investig Drugs. 2004;13:857–64.

    CAS  Google Scholar 

  28. Reid IR. Short-term and long-term effects of osteoporosis therapies. Nat Rev Endocrinol. 2015;11:418–28.

    CAS  Google Scholar 

  29. Fernández E, Gil FJ, Ginebra MP, Driessens FC, Planell JA, Best SM. Production and characterization of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3(PO4)2 system: pH, workability and setting times. J Mater Sci Mater Med. 1999;10:223–30.

    Google Scholar 

  30. Garrault S, Nonat A. Hydrated layer formation on tricalcium and dicalcium silicate surfaces: Experimental study and numerical simulations. Langmuir. 2001;17:8131–8.

    CAS  Google Scholar 

  31. Tits J, Wieland E, Müller CJ, Landesman C, Bradbury MH. Strontium binding by calcium silicate hydrates. J Colloid Interface Sci. 2006;300:78–87.

    CAS  Google Scholar 

  32. Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 2004;25:1755–61.

    CAS  Google Scholar 

  33. Wu C, Ramaswamy Y, Kwik D, Zreiqat H. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials. 2007;28:3171–81.

    CAS  Google Scholar 

  34. Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV. Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. J Mater Chem. 2012;22:7395–402.

    CAS  Google Scholar 

  35. Lao J, Nedelec JM, Jallot E. New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J Mater Chem. 2009;19:2940–9.

    CAS  Google Scholar 

  36. Gómez-Leduc T, Desancé M, Hervieu M, Legendre F, Ollitrault D, de Vienne C, et al. Hypoxia is a critical parameter for chondrogenic differentiation of human umbilical cord blood mesenchymal stem cells in type I/III collagen sponges. Int J Mol Sci. 2017;18:1933.

    Google Scholar 

  37. Choe G, Park J, Park H, Lee JY. Hydrogel biomaterials for stem cell microencapsulation. Polymers. 2018;10:997.

    Google Scholar 

  38. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011;7:1–16.

    CAS  Google Scholar 

  39. No YJ, Li JJ, Zreiqat H. Doped calcium silicate ceramics: a new class of candidates for synthetic bone substitutes. Materials. 2017;10:53.

    Google Scholar 

  40. Han P, Wu C, Xiao Y. The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci. 2013;1:379–92.

    CAS  Google Scholar 

  41. Shie MY, Ding SJ, Chang HC. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011;7:2604–14.

    CAS  Google Scholar 

  42. Kao CT, Chen YJ, Ng HY, Lee AK, Huang TH, Lin TF, Hsu TT. Surface modification of calcium silicate via mussel-inspired polydopamine and effective adsorption of extracellular matrix to promote osteogenesis differentiation for bone tissue engineering. Materials. 2018;11:1664.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge receipt grants from the Ministry of Science and Technology (MOST 106-2314-B-040-003-MY3), China Medical University Hospital grants (DMR-107-150), and Chung Shan Medical University Hospital grants (CSH-2019-039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ssu-Yin Yen or Chia-Che Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TH., Kao, CT., Shen, YF. et al. Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells. J Mater Sci: Mater Med 30, 68 (2019). https://doi.org/10.1007/s10856-019-6274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6274-2

Navigation