Skip to main content
Log in

Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Schwann cells play a key role in peripheral nerve regeneration. Failure in sufficient formation of Büngner bands due to impaired Schwann cell proliferation has significant effects on the functional outcome after regeneration. Therefore, the growth substrate for Schwann cells should be considered with highest priority in any peripheral nerve tissue engineering approach. Due to its excellent biocompatibility silk fibroin has most recently attracted considerable interest as a biomaterial for use as conduit material in peripheral nerve regeneration. In this study we established a protocol to covalently bind collagen and laminin, which have been isolated from human placenta, to silk fibroin utilizing carbodiimide chemistry. Altered adhesion, viability and proliferation of Schwann cells were evaluated. A cell adhesion assay revealed that the functionalization with both, laminin or collagen, significantly improved Schwann cell adhesion to silk fibroin. Moreover laminin drastically accelerated adhesion. Schwann cell proliferation and viability assessed with BrdU and MTT assay, respectively, were significantly increased in the laminin-functionalized groups. The results suggest beneficial effects of laminin on both, cell adhesion as well as proliferative behaviour of Schwann cells. To conclude, the covalent tailoring of silk fibroin drastically enhances its properties as a cell substratum for Schwann cells, which might help to overcome current hurdles bridging long distance gaps in peripheral nerve injuries with the use of silk-based nerve guidance conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26:151–60. doi:10.1179/016164104225013798.

    Article  Google Scholar 

  2. Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng. 2004;1:151–7. doi:10.1088/1741-2560/1/3/004.

    Article  Google Scholar 

  3. Höke A, Redett R, Hameed H, et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci. 2006;26:9646–55.

    Article  Google Scholar 

  4. Millesi H. Bridging defects: autologous nerve grafts. Acta Neurochir Suppl. 2007;100:37–8.

    Article  Google Scholar 

  5. Mukhatyar V, Karumbaiah L, Yeh J, Bellamkonda R. Tissue engineering strategies designed to realize the endogenous regenerative potential of peripheral nerves. Adv Mater. 2009;21:4670–9. doi:10.1002/adma.200900746.

    Google Scholar 

  6. Arino H, Brandt J, Dahlin LB. Implantation of Schwann cells in rat tendon autografts as a model for peripheral nerve repair: long term effects on functional recovery. Scand J Plast Reconstr Surg Hand Surg. 2008;42:281–5.

    Article  Google Scholar 

  7. Johnson EO, Soucacos PN. Nerve repair: Experimental and clinical evaluation of biodegradable artificial nerve guides. Injury. 2008;39:29–33. doi:10.1016/j.injury.2008.05.018.

    Article  Google Scholar 

  8. Saheb-Al-Zamani M, Yan Y, Farber SJ, et al. Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol. 2013;247:165–77.

    Article  Google Scholar 

  9. Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ. ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng. 2007;13:2863–70.

    Article  Google Scholar 

  10. Chen Z-L, Yu W-M, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007;30:209–33. doi:10.1146/annurev.neuro.30.051606.094337.

    Article  Google Scholar 

  11. Wang GY, Hirai K, Shimada H. The role of laminin, a component of Schwann cell basal lamina, in rat sciatic nerve regeneration within antiserum-treated nerve grafts. Brain Res. 1992;570:116–25. doi:10.1016/0006-8993(92)90571-P.

    Article  Google Scholar 

  12. Murphy AR, Kaplan DL. Biomedical applications of chemically-modified silk fibroin. J Mater Chem. 2009;19:6443–50. doi:10.1039/b905802h.

    Article  Google Scholar 

  13. Hayden RS, Vollrath M, Kaplan DL. Effects of clodronate and alendronate on osteoclast and osteoblast co-cultures on silk-hydroxyapatite films. Acta Biomater. 2014;10:486–93. doi:10.1016/j.actbio.2013.09.028.

    Article  Google Scholar 

  14. Vepari C, Kaplan DL. Silk as a Biomaterial. Prog Polym Sci. 2007;32:991–1007. doi:10.1016/j.progpolymsci.2007.05.013.

    Article  Google Scholar 

  15. Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289–97. doi:10.1016/j.biomaterials.2003.08.045.

    Article  Google Scholar 

  16. Teuschl AH, Schuh CMAP, Halbweis R, et al. A new preparation method for anisotropic silk fibroin nerve guidance conduits and its evaluation in vitro and in a rat sciatic nerve defect model. Tissue Eng Part C Methods. 2015 doi:10.1089/ten.TEC.2014.0606.

  17. Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials. 2007;28:1643–52. doi:10.1016/j.biomaterials.2006.12.004.

    Article  Google Scholar 

  18. Madduri S, Papaloïzos M, Gander B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials. 2010;31:2323–34. doi:10.1016/j.biomaterials.2009.11.073.

    Article  Google Scholar 

  19. Teuschl AH, Neutsch L, Monforte X, et al. Enhanced cell adhesion on silk fibroin via lectin surface modification. Acta Biomater. 2014;10:2506–17. doi:10.1016/j.actbio.2014.02.012.

    Article  Google Scholar 

  20. Guillaume O, Park J, Monforte X, et al. Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair. J Mater Sci Mater Med. 2016;27:1–13. doi:10.1007/s10856-015-5648-3.

    Article  Google Scholar 

  21. Chernousov MA, Carey DJ. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol. 2000;15:593–601.

    Google Scholar 

  22. Kaewkhaw R, Scutt AM, Haycock JW. Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat Protoc. 2012;7:1996–2004. doi:10.1038/nprot.2012.118.

    Article  Google Scholar 

  23. Zaoming W, Codina R, Fernández-Caldas E, Lockey RF. Partial characterization of the silk allergens in mulberry silk extract. J Investig Allergol Clin Immunol. 1996;6:237–41. doi:10.1016/S0091-6749(96)80327-7.

    Google Scholar 

  24. Vleggeert-Lankamp CLA-M, Pêgo AP, Lakke EAJF, et al. Adhesion and proliferation of human Schwann cells on adhesive coatings. Biomaterials. 2004;25:2741–51. doi:10.1016/j.biomaterials.2003.09.067.

    Article  Google Scholar 

  25. Pêgo AP, Vleggeert-Lankamp CLAM, Deenen M, et al. Adhesion and growth of human Schwann cells on trimethylene carbonate (co)polymers. J Biomed Mater Res A. 2003;67:876–85. doi:10.1002/jbm.a.10074.

    Article  Google Scholar 

  26. Yu W-M, Chen Z-L, North AJ, Strickland S. Laminin is required for Schwann cell morphogenesis. J Cell Sci. 2009;122:929–36. doi:10.1242/jcs.033928.

    Article  Google Scholar 

  27. Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med. 2010;4:524–31. doi:10.1002/term.

    Article  Google Scholar 

  28. Santiago LY, Nowak RW, Rubin JP, Marra KG. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials. 2006;27:2962–9. doi:10.1016/j.biomaterials.2006.01.011.

    Article  Google Scholar 

  29. di Summa PG, Kalbermatten DF, Raffoul W, et al. Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Eng Part A. 2013;19:368–79. doi:10.1089/ten.tea.2012.0124.

    Article  Google Scholar 

  30. Zhang K, Kramer R. Laminin 5 deposition promotes keratinocyte motility. Exp Cell Res. 1996;227:309–22. doi:10.1006/excr.1996.0280.

    Article  Google Scholar 

  31. Ocalan M, Goodman SL, Kuehl U, et al. Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev Biol. 1988;125:158–67. doi:10.1016/0012-1606(88)90068-1.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the City of Vienna Competence Team reacTissue Project (MA27#12-06) as well as the financial support by the Lorenz Böhler Fond are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M.A.P. Schuh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuh, C.M., Monforte, X., Hackethal, J. et al. Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation. J Mater Sci: Mater Med 27, 188 (2016). https://doi.org/10.1007/s10856-016-5783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5783-5

Keywords

Navigation