Skip to main content
Log in

Directional and temporal variation of the mechanical properties of robocast scaffold during resorption

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper addresses the mechanical behavior of robocast PCL-Bioglass® scaffolds. These structures can be used as 3rd generation implants in tissue engineering to support the regrowth of damaged tissue, in particular bone. After successful tissue regeneration the scaffolds slowly dissolve leaving no foreign material permanently inside the body. However, to avoid mechanical separation from surrounding tissue they must exhibit similar mechanical properties. The present study introduces a detailed numerical study focusing on the determination of effective mechanical material properties, their anisotropy, and mechanical degradation due to scaffold resorption. In order to accurately capture the complex scaffold geometry, micro-computed tomography scans of actual samples are conducted. The resulting three-dimensional data are directly converted into finite element calculation models. Numerical compressive tests of these unmodified models are repeated for three perpendicular directions to investigate mechanical anisotropy, after which the effect of scaffold degradation due to exposure to body fluid is simulated. To this end, two different resorption models, namely surface erosion and bulk degradation, are applied to the micro-computed tomography data. The modified geometry data are then converted into calculation models and numerical compression tests then allow the prediction of the mechanical properties of partially resorbed scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.M. Werier, COA Bone graft substitutes in oncology, paediatrics, and hip arthroplasty, Winter ed., 2014.

  2. Hench L, Jones J. New materials and technologies for healthcare. London: The Imperial College Press; 2012.

    Google Scholar 

  3. Van der Stok J, Van Lieshout EMM, El-Massoudi Y, Van Kralingen GH, Patka P. Acta Biomater. 2011;7:739–50.

    Article  Google Scholar 

  4. U.o.A. Department of Materials Engineering and Ceramics, Portugal, J. Eur. Ceram. Soc. 34, 107–118 (2014).

  5. Miranda P, Pajares A, Saiz E, Tomsia AP, Guibe F. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J. Biomed. Mater. Res. 2008;85:218–27.

    Article  Google Scholar 

  6. Carter DR, Hayes WC. Science. New Ser. 1976;194:1174–6.

    Google Scholar 

  7. Tesavibul PA, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR, Stampfl J. Mater. Lett. 2012;74:81–4.

    Article  Google Scholar 

  8. Chen Q, Mohn D, Stark WJ. Am. Ceram. Soc. 2011;4188:94.

    Google Scholar 

  9. Jones JR, Ehrenfried LM, Hench LL. Biomaterials. 2006;27:964–73.

    Article  Google Scholar 

  10. Woodruff MA, Dietmar HW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–56

    Article  Google Scholar 

  11. Hoppe A, Guldal NS, Boccaccini AR. Biomaterials. 2011;32:2757–74.

    Article  Google Scholar 

  12. Fiedler T, Videira AC, Bártolo P, Strauch M, Murch GE, Ferreira JMF. On the mechanical properties of PLC–bioactive glass scaffolds fabricated via BioExtrusion. Mater. Sci. Eng. C 2015;57:288–93.

    Article  Google Scholar 

  13. ISO 13314:2011. Mechanical testing of metals—Ductility testing—Compression test for porous and cellular metals. 2011.

  14. Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. J. Control. Release. 2014;190:398–414.

    Article  Google Scholar 

  15. Yang C-S, Wu H-C, Sun J-S, Hsiao H-M, Wang T-W. ACS Appl. Mater. Interfaces. 2013;5:10985–94.

    Article  Google Scholar 

  16. Sun H, Mei L, Song C, Cui X, Wang P. Biomaterials. 2006;27:1735–40.

    Article  Google Scholar 

  17. Hakkarainen M. Adv. Polym. Sci. 2002;157:129–30.

    Google Scholar 

  18. Pulkkinen M, Malin M, Böhm J, Tarvainen T, Wirth T, Seppälä J, Järvinen K. Eur. J. Pharm. Sci. 2009;36:310–9.

    Article  Google Scholar 

  19. M.A. Woodruff, H.W. Dietmar, QUT Web Site (2010).

  20. Chang H-M, Prasannan A, Tsai H-C, Jhu J-J. Appl. Surf. Sci. 2014;313:828–33.

    Article  Google Scholar 

  21. Meseguer-Dueñas JM, Más-Estellés J, Castilla-Cortázar I, Escobar Ivirico JL, Vidaurre A. J. Mater. Sci. 2011;22:11–8.

    Google Scholar 

  22. S.D. Badilatti, L. Sommerhalder, R. Muller, Swiss Society of Biomedical Engineering Annual Meeting 2014 Abstracts (2014).

  23. Marcolongo MA, Jamison D. Advances in Biomaterials for Clinical. In: Winkelstein BA, editor. Orthopaedic Biomechanics. Boca Raton: CRC Press; 2012. p. 563.

    Google Scholar 

  24. Siepmann J, Gopferich A. Adv. Drug Deliv. Rev. 2001;48:229–47.

    Article  Google Scholar 

  25. Edlund U, Albertsson AC. Adv. Polym. Sci. 2002;157:84.

    Google Scholar 

  26. G. Vladimír, Elektrotechnika, Študentské práce (2010).

  27. Shore SW, Unnikrishnan GU, Hussein AI, Morgan EF. Bone Biomechanics, Orthopaedic Biomechanics. Winkelstein: CRC Press; 2012. p. 4–34.

    Google Scholar 

  28. Mosekilde L. Bone. 1989;10:425–32.

    Article  Google Scholar 

  29. Rahaman NM. Tissue Engineering Using Ceramics and Polymers, vol. 2. Cambridge: Woodhead Publishing; 2014.

    Google Scholar 

Download references

Acknowledgments

This research was supported under the Australian Research Council Discovery Projects funding scheme (Project Number DP130101377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fiedler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waygood, J., Murch, G.E. & Fiedler, T. Directional and temporal variation of the mechanical properties of robocast scaffold during resorption. J Mater Sci: Mater Med 26, 229 (2015). https://doi.org/10.1007/s10856-015-5560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5560-x

Keywords

Navigation