Skip to main content
Log in

Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive and low cytotoxic three dimensional nano-hydroxyapatite (nHAp) and aligned carbon nanotube oxide (a-CNTO) composite has been investigated. First, freestanding aligned carbon nanotubes porous scaffold was prepared by large-scale thermal chemical vapour deposition and functionalized by oxygen plasma treatment, forming a-CNTO. The a-CNTO was covered with plate-like nHAp crystals prepared by in situ electrodeposition techniques, forming nHAp/a-CNTO composite. After that nHAp/a-CNTO composite was immersed in simulated body fluid for composite consolidation. This novel nanobiomaterial promotes mesenchymal stem cell adhesion with the active formation of membrane projections, cell monolayer formation and high cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  2. Oyane A, Onuma K, Ito A, Kim HM, Kokubo T, Nakamura T. Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res A. 2003;64A:339–48.

    Article  Google Scholar 

  3. Vallet-Regi M, Gonzalez-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32:1–31.

    Article  Google Scholar 

  4. Shin US, Yoon IK, Lee GS, et al. Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J Tissue Eng. 2011;2:674287.

    Google Scholar 

  5. White AA, Best SM, Kinloch IA. Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol. 2007;4:1–13.

    Article  Google Scholar 

  6. Zhang L, Liu W, Yue C, Zhang T, Li P, Xing Z, Chen Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon. 2013;61:105–15.

    Article  Google Scholar 

  7. Boccaccini AR, Cho J, Subhani T, Kaya C, Kaya F. Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. J Eur Ceram Soc. 2010;30:1115–11129.

    Article  Google Scholar 

  8. Hahna B-D, Lee J-M, Park D-S, Choi J-J, Ryua J, Yoon W-H, et al. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5(8):3205–14.

    Article  Google Scholar 

  9. Najafi H, Nemati ZA, Sadeguian Z. Inclusion of carbon nanotubes in a hydroxyapatite sol–gel matrix. Ceram Int. 2009;35:2987–91.

    Article  Google Scholar 

  10. Manso M, Jimenez C, Morant C, Herrero P, Martinez-Duart JM. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials. 2000;21:1755–61.

    Article  Google Scholar 

  11. Zogbi MM, Saito E, Zanin H, Marciano FR, Lobo AO. Hydrothermal–electrochemical synthesis of nano-hydroxyapatite crystals on superhydrophilic vertically aligned carbon nanotubes. Mater Lett. 2014;132:70–4.

    Article  Google Scholar 

  12. Grinet MAVM, Zanin H, Granato AEC, Porcionatto M, Marciano FR, Lobo AO. Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds. J Mater Chem B. 2014;2(9):1196–204.

    Article  Google Scholar 

  13. Lobo AO, Siqueira IAWB, das Neves MF, Marciano FR, Corat EJ, Corat MAF. In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites. J Mater Sci Mater Med. 2013;24:1723–32.

    Article  Google Scholar 

  14. Zanin H, May PW, Lobo AO, Saito E, Machado JPB, Martins G, Trava-Airoldi VJ, Corat EJ. Effect of multi-walled carbon nanotubes incorporation on the structure, optical and electrochemical properties of diamond-like carbon thin films. J Electrochem Soc. 2014;161(5):H290–5.

    Article  Google Scholar 

  15. Hollanda LM, Lobo AO, Lancellotti M, Berni E, Corat EJ, Zanin H. Graphene and carbon nanotube nanocomposite for gene transfection. Mater Sci Eng C. 2014;39:288–98.

    Article  Google Scholar 

  16. Lobo AO, Zanin H, Siqueira IAWB, Leite NCS, Marciano FR, Corat EJ. Effect of ultrasound irradiation on the production of HAp/MWCNT nanocomposites. Mater Sci Eng C. 2013;33:4305–12.

    Article  Google Scholar 

  17. Meirelles LS, Nardi NB. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003;123:702–11.

    Article  Google Scholar 

  18. Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Veríssimo C. Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon. 2006;44:2202–11.

    Article  Google Scholar 

  19. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys. 2007;9:1276–91.

    Article  Google Scholar 

  20. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–107.

    Article  Google Scholar 

  21. Lobo AO, Ramos SC, Antunes EF, Marciano FR, Trava-Airoldi VJ, Corat EJ. Fast functionalization of vertically aligned multiwalled carbon nanotubes using oxygen plasma. Mater Lett. 2012;70:89–93.

    Article  Google Scholar 

  22. Aydin E, Planell JA, Hasirci V. Hydroxyapatite nanorod-reinforced biodegradable poly(l-lactic acid) composites for bone plate applications. J Mater Sci Mater Med. 2011;22:2413–24127.

    Article  Google Scholar 

  23. Gibson IR, Best SM, Bonfield W, et al. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422–8.

    Article  Google Scholar 

  24. Zheng XT, Zhou SB, Xiao Y, Yu XJ, Feng B. In situ preparation and characterization of a novel gelatin/poly(d, l-lactide)/hydroxyapatite nanocomposite. J Biomed Mater Res B. 2009;91B:181–90.

    Article  Google Scholar 

  25. Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978.

    Article  Google Scholar 

  26. Hu R, Lin C, Shi H, Wang H. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca–P electrolyte system. Mater Chem Phys. 2009;115(2–3):718–23.

    Article  Google Scholar 

  27. Kim H-M, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73.

    Article  Google Scholar 

  28. Barrere F, Snel MME, van Blitterswijk CA, de Groot K, Layrolle P. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004;25(14):2901–10.

    Article  Google Scholar 

  29. Song K, Li W, Wang H, Wang H, Liu T, Ning R, et al. Investigation of coculture of human adipose-derived stem cells and mature adipocytes. Appl Biochem Biotechnol. 2012;167:2381–7.

    Article  Google Scholar 

  30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  Google Scholar 

  31. Antonioli E, Lobo AO, Ferretti M, Cohen M, Marciano FR, Corat EJ, Trava-Airoldi VJ. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films. Mater Sci Eng C. 2013;33:641–7.

    Article  Google Scholar 

  32. Neves MF, Silva GR, Brazil TR, Marciano FR, Pacheco-Soares C, Lobo AO. Calcification in vitro of biomineralizated nanohydroxyapatite/superydrophilic vertically aligned multiwalled carbon nanotube scaffolds. Mater Res. 2013;16(3):614–8.

    Article  Google Scholar 

  33. Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol. 2004;287(1):C1–11.

    Article  Google Scholar 

  34. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  Google Scholar 

  35. Mcfarlin L, Gao X, Liu YB. Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rats. Wound Repair Regen. 2006;14:471–8.

    Article  Google Scholar 

  36. Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25:4731–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to the São Paulo Research Foundation (FAPESP Grant/2011/17877-7), (Grant/2013/07696-0), (Grant/2011/20345-7) and (Grant/2014/02163-7) and CNPq (Grant/474090/2013-2) (Grant/202439/2012-7) (Grant/404646/2012-3) for financial support. Special thanks to Priscila Leite for scanning electron microscopy analyses, Laboratorio Nacional de Luz Sincroton for HR-TEM, Laboratorio de Combustão e Propulsao (LCP) of Instituto Nacional de Pesquisas Espaciais, (INPE/Cachoeira Paulista).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hudson Zanin or Anderson O. Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, I.A.W.B., Oliveira, C.A.G.S., Zanin, H. et al. Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite. J Mater Sci: Mater Med 26, 113 (2015). https://doi.org/10.1007/s10856-015-5450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5450-2

Keywords

Navigation