Skip to main content
Log in

Biocompatible elastin-like click gels: design, synthesis and characterization

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Elastin-like recombinamer click gels (ELR-CGs) for biomedical applications, such as drug delivery or tissue engineering, have been developed by taking advantage of the click reaction (CuAAC) in the absence of traditional crosslinking agents. ELRs are functionalized with alkyne and azide groups using conventional chemical techniques to introduce the reactivity required to carry out the 1,3-dipolar cycloaddition under mild biocompatible conditions, with no toxic by-products and in short reaction times. Hydrogels with moduli in the range 1,000–10,000 Pa have been synthesized, characterized, and tested in vitro against several cell types. The cells embedded into ELR-CGs possessed high viability and proliferation rate. The mechanical properties, porosity and swelling of the resulting ELR-CGs can easily be tuned by adjusting the ELR concentration. We also show that it is possible to replicate different patterns on the hydrogel surface, thus allowing the use of this type of hydrogel to improve applications that require cell guidance or even differentiation depending on the surface topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater. 2009;8(1):15–23.

    Article  Google Scholar 

  2. Raghavan S, Chen CS. Micropatterned environments in cell biology. Adv Mater. 2004;16(15):1303–13.

    Article  Google Scholar 

  3. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18(24):1573–83.

    Article  Google Scholar 

  4. Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27(16):3044–63.

    Article  Google Scholar 

  5. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18(24):1573–83.

    Article  Google Scholar 

  6. Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel micro-textures. Biomed Microdevices. 2002;4(4):267–75.

    Article  Google Scholar 

  7. Mata A, Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Roy S. A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials. 2009;30(27):4610–7.

    Article  Google Scholar 

  8. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.

    Article  Google Scholar 

  9. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  Google Scholar 

  10. Rodríguez-Cabello JC, Martín L, Alonso M, Arias FJ, Testera AM. “Recombinamers” as advanced materials for the post-oil age. Polymer. 2009;50(22):5159–69.

    Article  Google Scholar 

  11. Arias FJ, Santos M, Fernandez-Colino A, Pinedo G, Girotti A. Recent contributions of elastin-like recombinamers to biomedicine and nanotechnology. Curr Topic Med Chem. 2014;14(6):819–36.

    Article  Google Scholar 

  12. Rincón A, Molina-Martinez I, de Las Heras B, Alonso M, Baílez C, Rodríguez-Cabello J, Herrero-Vanrell R. Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies. J Biomed Mater Res. 2006;78(2):343–51.

    Article  Google Scholar 

  13. Wright ER, Conticello VP. Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev. 2002;54(8):1057–73.

    Article  Google Scholar 

  14. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Edition. 2001;40(11):2004–21.

    Article  Google Scholar 

  15. Meldal M, Tornøe CW. Cu-catalyzed azide − alkyne cycloaddition. Chem Rev. 2008;108(8):2952–3015.

    Article  Google Scholar 

  16. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67(9):3057–64.

    Article  Google Scholar 

  17. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes. Angew Chem Int Edition. 2002;41(14):2596–9.

    Article  Google Scholar 

  18. Devlieger R, D'Hooghe T, Timmerman D. Uterine adenomyosis in the infertility clinic. Hum Reprod Update. 2003;9(2):139–47.

    Article  Google Scholar 

  19. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci. 2007;104(43):16793–7.

    Article  Google Scholar 

  20. Wenge U, Ehrenschwender T, Wagenknecht H-A. Synthesis of 2′-O-propargyl nucleoside triphosphates for enzymatic oligonucleotide preparation and “click” modification of dna with nile red as fluorescent probe. Bioconjugate Chem. 2013;24(3):301–4.

    Article  Google Scholar 

  21. Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 2008;320(5876):664–7.

    Article  Google Scholar 

  22. Pierna M, Santos M, Arias FJ, Alonso M, Rodríguez-Cabello JC. Efficient cell and cell-sheet harvesting based on smart surfaces coated with a multifunctional and self-organizing elastin-like recombinamer. Biomacromolecules. 2013;14(6):1893–903.

    Article  Google Scholar 

  23. Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by “Click Chemistry”. Macromolecules. 2006;39(5):1709–18.

    Article  Google Scholar 

  24. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials. 2014;35(18):4969–85.

    Article  Google Scholar 

  25. Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT, Parker TM. Elastic protein-based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed. 1998;9(10):1015–48.

    Article  Google Scholar 

  26. Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(gvgvp) and its γ-irradiation cross-linked matrix: summary of generic biological test results. J Bioact Compat Polym. 1991;6(3):263–82.

    Article  Google Scholar 

  27. Lampe KJ, Antaris AL, Heilshorn SC. Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth. Acta Biomate. 2013;9(3):5590–9.

    Article  Google Scholar 

  28. Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules. 2002;3(5):910–6.

    Article  Google Scholar 

  29. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27(1):91–9.

    Article  Google Scholar 

  30. Tejeda-Montes E, Smith KH, Poch M, López-Bosque MJ, Martín L, Alonso M, Engel E, Mata A. Engineering membrane scaffolds with both physical and biomolecular signaling. Acta Biomater. 2012;8(3):998–1009.

    Article  Google Scholar 

  31. Martin L, Alonso M, Moller M, Rodriguez-Cabello JC, Mela P. 3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers. Soft Matter. 2009;5(8):1591–3.

    Article  Google Scholar 

  32. Martin L, Arias FJ, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer. Soft Matter. 2010;6(6):1121–4.

    Article  Google Scholar 

  33. Rodriguez-Cabello JC, Girotti A, Ribeiro A, Arias FJ. Synthesis of genetically engineered protein polymers (recombinamers) as an example of advanced self-assembled smart materials. Methods Mol Biol. 2012;811:17–38 (Clifton, N.J.).

    Article  Google Scholar 

  34. Costa RR, Custodio CA, Arias FJ, Rodriguez-Cabello JC, Mano JF. Layer-by-layer assembly of chitosan and recombinant biopolymers into biomimetic coatings with multiple stimuli-responsive properties. Small. 2011;7(18):2640–9.

    Article  Google Scholar 

  35. Lundquist IV, Pelletier JC. Improved solid-phase peptide synthesis method utilizing α-azide-protected amino acids. Org Lett. 2001;3(5):781–3.

    Article  Google Scholar 

  36. Zeng X, Ruckenstein E. Control of pore sizes in macroporous chitosan and chitin membranes. Ind Eng Chem Res. 1996;35(11):4169–75.

    Article  Google Scholar 

  37. Martin L, Alonso M, Girotti A, Arias FJ, Rodriguez-Cabello JC. Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers. Biomacromolecules. 2009;10(11):3015–22.

    Article  Google Scholar 

  38. Trabbic-Carlson K, Setton LA, Chilkoti A. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules. 2003;4(3):572–80.

    Article  Google Scholar 

  39. Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol. 2004;49(18):4207–18.

    Article  Google Scholar 

  40. Kiss MZ, Hobson MA, Varghese T, Harter J, Kliewer MA, Hartenbach EM, Zagzebski JA. Frequency-dependent complex modulus of the uterus: preliminary results. Phys Med Biol. 2006;51(15):3683–95.

    Article  Google Scholar 

  41. Oliveira MB, Song W, Martin L, Oliveira SM, Caridade SG, Alonso M, Rodriguez-Cabello JC, Mano JF. Development of an injectable system based on elastin-like recombinamer particles for tissue engineering applications. Soft Matter. 2011;7(14):6426–34.

    Article  Google Scholar 

  42. de Torre IG, Santos M, Quintanilla L, Testera A, Alonso M, Rodríguez-Cabello JC. Elastin-like recombinamer catalyst-free click gels: characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomater. 2014;10(6):2495–505.

    Article  Google Scholar 

  43. Yu Q, Zhou J, Fung YC. Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am J Physiol. 1993;265(1):H52–60.

    Google Scholar 

  44. Erkamp RQ, Wiggins P, Skovoroda AR, Emelianov SY, O’Donnell M. Measuring the elastic modulus of small tissue samples. Ultrason Imaging. 1998;20(1):17–28.

    Article  Google Scholar 

  45. Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP. Chondrocyte cells respond mechanically to compressive loads. J Orthop Res. 1994;12(3):311–20.

    Article  Google Scholar 

  46. Buechner PM, Lakes RS, Swan C, Brand RA. A broadband viscoelastic spectroscopic study of bovine bone: implications for fluid flow. Ann Biomed Eng. 2001;29(8):719–28.

    Article  Google Scholar 

  47. Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM. Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater. 2008;4(1):17–25.

    Article  Google Scholar 

  48. Ghosh S, Gutierrez V, Fernández C, Rodriguez-Perez MA, Viana JC, Reis RL, Mano JF. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size. Acta Biomater. 2008;4(4):950–9.

    Article  Google Scholar 

  49. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83.

    Article  Google Scholar 

  50. Falconnet D, Csucs G, Grandin H, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27(16):3044–63.

    Article  Google Scholar 

  51. Martin L, Arias JF, Alonso M, Garcia-Arevalo C, Rodriguez-Cabello JC. Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer. Soft Matter. 2010;6(6):1121–4.

    Article  Google Scholar 

  52. Garcia-Arevalo C, Pierna M, Girotti A, Arias FJ, Rodriguez-Cabello JC. A comparative study of cell behavior on different energetic and bioactive polymeric surfaces made from elastin-like recombinamers. Soft Matter. 2012;8(11):3239–49.

    Article  Google Scholar 

  53. Ozturk N, Girotti A, Kose GT, Rodríguez-Cabello JC, Hasirci V. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials. 2009;30(29):5417–26.

    Article  Google Scholar 

  54. Yannas IV. Emerging rules for inducing organ regeneration. Biomaterials. 2013;34(2):321–30.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the EU via the European regional development fund (ERDF), from the MINECO (MAT-2010-15982, MAT2010-15310, PRI-PIBAR-2011-1403 and MAT2012-38043), the JCyL (Projects VA049A11, VA152A12 and VA155A12), the CIBER-BBN, and the JCyL and the Instituto de Salud Carlos III under the “Network Center of Regenerative Medicine and Cellular Therapy of Castilla and Leon”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Rodríguez-Cabello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Testera, A.M., Girotti, A., de Torre, I.G. et al. Biocompatible elastin-like click gels: design, synthesis and characterization. J Mater Sci: Mater Med 26, 105 (2015). https://doi.org/10.1007/s10856-015-5435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5435-1

Keywords

Navigation