Skip to main content

Advertisement

Log in

In vitro blood and fibroblast responses to BisGMA–TEGDMA/bioactive glass composite implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A–glycidyl methacrylate–triethyleneglycol dimethacrylate (BisGMA–TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%–TEGDMA 50 wt%), (b) BAG–composite (50 wt% polymer + 50 wt% fraction of BAG–particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood–clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG–composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG–composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG–composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG–particles enhances fibroblast and blood responses on composite surfaces in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hench LL, Paschall HA. Direct chemical bond of bioactive glass ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7:25–42.

    Article  Google Scholar 

  2. Välimäki VV, Yrjans JJ, Vuorio E, Aro HT. Combined effect of bone morphogenetic protein–2 gene therapy and bioactive glass microspheres in enhancement of new bone formation. J Biomed Mater Res. 2005;75:501–9.

    Article  Google Scholar 

  3. Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomat. 1992;3:123–9.

    Article  Google Scholar 

  4. Takata T, Katauchi K, Akagawa Y, Nikai H. New connective tissue attachment formation on various biomaterials implanted in roots. Int J Oral Maxillofac Implants. 1994;9:77–84.

    Google Scholar 

  5. Wilson J, Nolletti D. Bonding of soft tissues to bioglass. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics. Bioactive glasses and glass ceramics, vol. 1. Florida: CRC Press; 1990. p. 283–302.

    Google Scholar 

  6. Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odont Scand. 1998;56:161–5.

    Article  Google Scholar 

  7. Allan I, Newman H, Wilson M. Particulate bioglass reduces the viability of bacterial biofilms formed on its surface in an in vitro model. Clin Oral Implants Res. 2002;13:53–8.

    Article  Google Scholar 

  8. Abdulmajeed AA, Walboomers XF, Massera J, Kokkari AK, Vallittu PK, Närhi TO. Blood and fibroblast responses to thermoset BisGMA–TEGDMA/glass fiber–reinforced composite implants in vitro. Clin Oral Implants Res. 2013. doi:10.1111/clr.12151.

  9. Abdulmajeed AA, Vallittu PK, Närhi TO, Lassila LV. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber–reinforced composite. Dent Mater. 2011;27:313–21.

    Article  Google Scholar 

  10. Fuentes GG, Esparza J, Rodriguez RJ, Manso-Silván M, Palomares J, Juhasz J, Best S, Mattilla R, Vallittu P, Achanta S, Giazzon M, Weder G, Donati I. Effects of He + ion implementation on surface properties of UV–cured Bis–GMA/TEGDMA bio compatible resins. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2011;269:111–6.

    Article  Google Scholar 

  11. Ballo AM, Akca EA, Ozen T, Lassila L, Vallittu PK, Närhi TO. Bone tissue responses to glass fiber–reinforced composite implants—a histomorphometric study. Clin Oral Implants Res. 2009;20:608–15.

    Google Scholar 

  12. Mattila RH, Laurila P, Rekola J, Gunn J, Lassila LV, Mäntylä T, Aho AJ, Vallittu PK. Bone attachment to glass fibre–reinforced composite implant with porous surface. Acta Biomater. 2009;5:1639–46.

    Article  Google Scholar 

  13. Tuusa SM, Peltola MJ, Tirri T, Lassila LV, Vallittu PK. Frontal bone defect repair with experimental glass–fiber–reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater. 2007;82:149–55.

    Article  Google Scholar 

  14. Hautamäki MP, Meretoja VV, Mattila PH, Aho AJ, Vallittu PK. Osteoblast response to polymethylmethacrylate – bioactive glass composite. J Mater Sci Mater Med. 2010;21:1685–92.

    Article  Google Scholar 

  15. Nganga S, Zhang D, Moritz M, Vallittu PK, Hupa L. Multi–layer porous fiber–reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass. Dent Mater. 2012;28:1134–45.

    Article  Google Scholar 

  16. Hong J, Andersson J, Ekdahl KN, Elgue G, Axén N, Larsson R, Nilsson B. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost. 1999;82:58–64.

    Google Scholar 

  17. Davies JE. Understanding peri–implant endosseous healing. J Dent Educ. 2003;67:932–49.

    Google Scholar 

  18. Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res. 2000;11:530–9.

    Article  Google Scholar 

  19. Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y. Biomimetic approach to dental implants. Curr Pharm Des. 2008;14:2201–11.

    Article  Google Scholar 

  20. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  21. Taborelli M, Jobin M, Francois P, Vaudaux P, Tonetti M, Szmukler-Moncler S, Simpson JP, Descouts P. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) surface characterization. Clin Oral Implants Res. 1997;8:208–16.

    Article  Google Scholar 

  22. Oates C, Wen W, Hamilton D. Role of titanium surface topography and surface wettability on focal adhesion kinase mediated signaling in fibroblasts. Materials. 2011;4:893–907.

    Article  Google Scholar 

  23. Hallab N, Bundy K, O’Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissu Eng. 2001;71:55–71.

    Article  Google Scholar 

  24. Schakenraad JM, Busscher HJ, Wildevuur ChRH, Arends J. Thermodynamic aspects of cell spreading on solid substrata. J Cell Biophys. 1988;13:75–91.

    Google Scholar 

  25. Ponsonnet L, Reybier K, Jaffezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior. Mater Sci Eng. 2003;23:551–60.

    Article  Google Scholar 

  26. Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J. The effect of surface roughening of polymers on measured contact angles of liquids. Colloid Surf. 1984;9:319–31.

    Article  Google Scholar 

  27. Abdulmajeed AA, Vallittu PK, Lassila LV, Närhi TO. The effect of exposed glass fibers and particles of bioactive glass on the surface wettability of composite implants. Int J Biomater 2011;607971.

  28. Wennerberg A. On surface roughness and implant incorporation (dissertation). Göteborg, Sweden: University of Göteborg; 1996.

  29. Imai Y, Nose Y. A new method for evaluation of antithrombogenicity of materials. J Biomed Mater Res. 1972;6:165–72.

    Article  Google Scholar 

  30. Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J, Wang GJ, Ding PD, Xi TF, Leng Y. Hemocompatibility of titanium oxide films. Biomaterials. 2003;24:2177–87.

    Article  Google Scholar 

  31. Rasband WS. ImageJ, US National Institutes of Health, Bethesda. http://imagej.nih.gov/ij/ 1997–2012.

  32. Lorentz K. Improved determination of serum calcium with 2–cresolphthalein complexone. Clin Chim Acta. 1982;126:327–34.

    Article  Google Scholar 

  33. Travan A, Marsich E, Donati I, Foulc MP, Moritz N, Aro HT, Paoletti S. Polysaccharide–coated thermosets for orthopedic applications: from material characterization to in vivo tests. Biomacromolecules. 2012;13:1564–72.

    Article  Google Scholar 

  34. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med. 1995;6:302–18.

    Article  Google Scholar 

  35. Ballo AM, Lassila LV, Vallittu PK, Närhi TO. Load bearing capacity of bone anchored fiber–reinforced composite. J Mater Sci Mater Med. 2007;18:2025–31.

    Article  Google Scholar 

  36. Zhao DS, Moritz N, Laurila P, Mattila R, Lassila LV, Strandberg N, Mäntylä T, Vallittu PK, Aro HT. Development of a multicomponent fiber–reinforced composite implant for load–sharing conditions. Med Eng Phys. 2009;31:461–9.

    Article  Google Scholar 

  37. Travan A, Donati I, Marsich E, Bellomo F, Achanta S, Toppazzini M, Semeraro S, Scarpa T, Spreafico V, Paoletti S. Surface modification, polysaccharide deposition on, BisGMA/TEGDMA thermoset. Biomacromolecules. 2010;11:583–92.

    Article  Google Scholar 

  38. Tuusa SM, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LV, Vallittu PK. Reconstruction of critical size calvarial bone defects in rabbits with glass–fiber–reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomaterς. 2008;84:510–9.

    Article  Google Scholar 

  39. Hautamäki MP, Aho AJ, Alander P, Rekola J, Gunn J, Strandberg N, Vallittu PK. Repair of bone segment defects with surface porous fiber–reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM. Acta Orthop. 2008;79:555–64.

    Article  Google Scholar 

  40. Kulkova J, Abdulmajeed AA, Könönen E, Närhi TO. Biofilm medium leads to apatite formation on bioactive surfaces. J Appl Biomater Funct Mater. 2013. doi:10.5301/JABFM.5000154.

  41. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri–implant mucositis. Clin Oral Implants Res. 1996;7:201–11.

    Article  Google Scholar 

  42. Park JY, Gemmell CH, Davies JE. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials. 2001;22:2671–82.

    Article  Google Scholar 

  43. Sharma CP. LTI carbons: blood compatibility. J Colloid Interf Sci. 1984;97:585–6.

    Article  Google Scholar 

  44. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha–granules. Blood. 1999;94:3791–9.

    Google Scholar 

  45. Goodman SL, Lelah MD, Lambrecht LK, Cooper SL, Albrecht RM. In vitro vs. ex vivo platelet deposition on polymer surfaces. Scan Electron Microsc. 1984;1:279–90.

    Article  Google Scholar 

  46. Kubies D, Himmlova L, Riedel T, Chánová E, Balík K, Douděrová M, Bártová J, Pešáková V. The interaction of osteoblasts with bone–implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol Res. 2011;60:95–111.

    Google Scholar 

  47. Schakenraad JM, Busscher HJ, Wildevuur CR, Arends J. The influence of substratum free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J Biomed Mater Res. 1986;20:773–84.

    Article  Google Scholar 

  48. Vallittu PK. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study. Quintessence Int. 1997;28:39–44.

    Google Scholar 

  49. Massera J, Fagerlund S, Hupa L, Hupa M. Crystallization mechanism of the bioactive glasses 45S5 and S53P4. J Am Ceram Soc. 2012;95:607–13.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Katja Sampalahti (Institute of Dentistry, University of Turku, Finland) for her skillful technical assistance. This study belongs to the BioCity Turku Biomaterial Research Program (www.biomaterials.utu.fi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aous A. Abdulmajeed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulmajeed, A.A., Kokkari, A.K., Käpylä, J. et al. In vitro blood and fibroblast responses to BisGMA–TEGDMA/bioactive glass composite implants. J Mater Sci: Mater Med 25, 151–162 (2014). https://doi.org/10.1007/s10856-013-5040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5040-0

Keywords

Navigation