Skip to main content

Advertisement

Log in

An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal model

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Synthetic calcium phosphates, despite their bioactivity, are brittle. Calcium phosphate- mullite composites have been suggested as potential dental and bone replacement materials which exhibit increased toughness. Aluminium, present in mullite, has however been linked to bone demineralisation and neurotoxicity: it is therefore important to characterise the materials fully in order to understand their in vivo behaviour. The present work reports the compositional mapping of the interfacial region of a calcium phosphate—20 wt% mullite biocomposite/soft tissue interface, obtained from the samples implanted into the long bones of healthy rabbits according to standard protocols (ISO-10993) for up to 12 weeks. X-ray micro-fluorescence was used to map simultaneously the distribution of Al, P, Si and Ca across the ceramic–soft tissue interface. A well defined and sharp interface region was present between the ceramic and the surrounding soft tissue for each time period examined. The concentration of Al in the surrounding tissue was found to fall by two orders of magnitude, to the background level, within ~35 μm of the implanted ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  2. Gautier S, Champion E, Assollant DB. Processing, microstructure and toughness of Al2O3 platelet-reinforced hydroxyapatite. J Euro Ceram Soc. 1997;17:1361–9.

    Article  CAS  Google Scholar 

  3. Li J, Fartash B, Hermansson L. Hydroxyapatite—alumina composites and bone-bonding. Biomaterials. 1995;16:417–22.

    Article  CAS  Google Scholar 

  4. Rao RR, Kannan TS. Synthesis and sintering of hydroxyapatite–zirconia composites. Mater Sci Eng C. 2002;20:187–93.

    Article  Google Scholar 

  5. Silva VV, Lameiras FS, Domínguez RZ. Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Compos Sci Technol. 2001;61:301–10.

    Article  CAS  Google Scholar 

  6. Gollera G, Demirkıran H, Oktar FN, Demirkesen E. Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram Inter. 2003;29:721–4.

    Article  Google Scholar 

  7. Suchanek W, Yashima M, Kakihana M, Yoshimura M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. J Am Ceram Soc. 1997;80:2805–13.

    Article  CAS  Google Scholar 

  8. Kaye GWC, Laby TH. Table of physical and chemical constants. 15th ed. London and New York: Longman; 1986.

    Google Scholar 

  9. Erbe EM, Day DE. Chemical durability of Y2O3–Al2O3–SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res. 1993;27:1301–8.

    Article  CAS  Google Scholar 

  10. Martin RA, Salmon PS, Carroll DL, Smith ME, Hannon AC. Structure and thermal properties of yttrium alumino-phosphate glasses. J Phys Condens Matter. 2008;20:115204.

    Article  Google Scholar 

  11. Nath S, Basu B, Mohanty M, Mohanan PV. In vivo response of novel hydroxyapatite-mullite composites: results up to 12 weeks of implantation. J Biomed Mater Res B. 2009;90:547–57.

    Google Scholar 

  12. Priya A, Nath S, Basu B, Biswas K. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J Mater Sci Mater Med. 2010;21:1817–28.

    Article  CAS  Google Scholar 

  13. Nath S, Raghunandan U, Basu B. Fretting wear behavior of calcium phosphate-mullite composites in dry and albumin-containing simulated body fluid conditions. J Mater Sci Mater Med. 2010;21:1151–61.

    Article  CAS  Google Scholar 

  14. Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated mini review. Pharmacol Toxicol. 2001;88:159–67.

    Article  CAS  Google Scholar 

  15. Williams RJP. What is wrong with aluminium?. The J.D. Birchall memorial lecture. J Inorg Biochem. 1999;76:81–8.

    Article  CAS  Google Scholar 

  16. Priest ND. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update. J Environ Monit. 2004;6:375–403.

    Article  CAS  Google Scholar 

  17. Julka D, Gill KD. Altered calcium homeostasis: a possible mechanism of aluminium-induced neurotoxicity. Biochimica et biophysica acta. 1996;1315:47–54.

    Google Scholar 

  18. Carter DH, Sloan P, Brook IM, Hatton PV. Role of exchanged ions in the integration of ionomeric (glass polyalkenoate) bone substitutes. Biomaterials. 1997;18:459–66.

    Article  CAS  Google Scholar 

  19. Devlin AJ, Hatton PV, Brook IM. Dependence of in vitro biocompatibility of ionomeric cements on ion release. J Mater Sci Mater Med. 1998;9:737–41.

    Article  CAS  Google Scholar 

  20. Hantson PH, Mahieu P, Gersdorff M, Sindic CJM, Lauwerys R. Encephalopathy with seizures after use of aluminium-containing bone cement. Lancet. 1994;344:1647.

    Article  CAS  Google Scholar 

  21. Renard JL, Felten D, Bequet D. Post-otoneurosurgery aluminium encephalopathy. Lancet. 1994;344:63–4.

    Article  CAS  Google Scholar 

  22. Reushe E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, et al. Subacute fatal aluminium encephalopathy after reconstructive otoneurosurgery. Hum Pathol. 2001;32:1136–40.

    Article  Google Scholar 

  23. Hurrell-Gillinghama K, Reaney IM, Brook I, Hatton PV. In vitro biocompatibility of a novel Fe2O3 based glass ionomer cement. J Dent. 2006;34:533–8.

    Article  Google Scholar 

  24. Blades MC, Moore DP, Revell PA, Hill R. In vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit. J Mater Sci Mater Med. 1998;9:701–6.

    Article  CAS  Google Scholar 

  25. http://www.food.gov.uk/news/newsarchive/2008/jul/alu.

  26. Joint FAO/WHO expert committee on food additives. Sixty-seventh meeting Rome, 20–29 June 2006. ftp://ftp.fao.org/ag/agn/jecfa/jecfa67_final.pdf.

  27. Ljunggren KG, Lidums V, Sjogren B. Blood and urine levels of aluminium among workers exposed to aluminium flakes. Br J Ind Med. 1991;48:106–9.

    CAS  Google Scholar 

  28. Williams JW, et al. Biliary excretion of aluminium in aluminium osteodystrophy with liver disease. Ann Intern Med. 1986;104:782.

    CAS  Google Scholar 

  29. Flarend RE, Hem SL, White JL, Elmore D, Suckow MA, Rudy AC, Dandashli EA. In vivo absorption of aluminium containing vaccine adjuvants using 26Al. Vaccine. 1997;15:1314–8.

    Article  CAS  Google Scholar 

  30. Santos MH, Oliveira M, Souza LPF, Mansur HS, Vasconcelos WL. Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater Res. 2004;7:625–30.

    Article  CAS  Google Scholar 

  31. Flank AM, et al. LUCIA, a microfocus soft XAS beamline. Nucl Instrum Methods Phys Res B. 2006;246:269–74.

    Article  CAS  Google Scholar 

  32. Lagarde P, Flank AM, Vantelon D and Janousch M, Micro-Soft X-Ray Spectroscopy with the LUCIA Beamline. In AIP conference proceedings X-ray absorption fine structure—XAFS13: 13th international conference 2007;882:852–857.

  33. Nath S, Biswas K, Wang K, Bordia RK, Basu B. Sintering, phase stability, and properties of calcium phosphate-mullite, composites. J Am Ceram Soc. 2010;93(6):1639–49.

    CAS  Google Scholar 

  34. Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010;6:4457–75.

    Article  CAS  Google Scholar 

  35. Klein CPAT, de Blieck-Hogervorst JMA, Wolke JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro.

  36. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 1997;18:1037–41.

    Article  CAS  Google Scholar 

  37. Gatti AM, Zatfe D, Poli GP. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials. 1990;11:513–7.

    Article  CAS  Google Scholar 

  38. Takei T, Hayashi S, Yasumori A, Okada K. Pore structure and thermal stability of mesoporous mullite fibers prepared by crystallization and selective leaching of Al2O3–SiO2 glass fibers. J Porous Mater. 1999;6:119–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank R.J. Newport for helpful discussions and advice; they acknowledge a British Council Award (No 13973) as well as funding from the Department of Science and Technology, Government of India. This research was conducted under the framework of UK-India Education and Research Initiative (UKIERI) that facilitates the collaboration between IIT Kanpur and the University of Birmingham. The authors would like to thank the French National Synchrotron Facility, Soleil, for the allocation of beam-time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R.A., Jaffer, Z., Tripathi, G. et al. An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal model. J Mater Sci: Mater Med 22, 2537–2543 (2011). https://doi.org/10.1007/s10856-011-4428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4428-y

Keywords

Navigation