Skip to main content
Log in

Self-assembled micellar aggregates based monomethoxyl poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(aminoethyl methacrylate) triblock copolymers as efficient gene delivery vectors

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Amphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers. The studies showed the incorporation of the hydrophobic PCL segment in triblock copolymers affected the binding capability to pDNA and surface charges of complexes due to the formation of micelles increasing the local charges. The presence of mPEG segment in gene vector decreased the surface charges of the complexes and increased the stability of the complexes in serum because of the steric hindrance effect. It was also found that the combination of PEG and PCL segments into one macromolecule might lead to synergistic effect for better transfection efficiency in serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mulligan RC. The basic science of gene therapy. Science. 1993;260:926–32.

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol. 2000;18:33–7.

    Article  CAS  PubMed  Google Scholar 

  3. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29:3477–96.

    Article  CAS  PubMed  Google Scholar 

  4. Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401:517–8.

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109:259–302.

    Article  CAS  PubMed  Google Scholar 

  6. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Wagner E, Cotten M, Foisner R, Birnstiel ML. Transferrin-polycation–DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc Natl Acad Sci USA. 1991;88:4255–9.

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Cherng JY, Wetering VP, Talsma H, Crommelin DJ, Hennink WE. Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino) ethyl methacrylate) plasmid nanoparticles. Pharm Res. 1996;13:1038–42.

    Article  CAS  PubMed  Google Scholar 

  9. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22:2075–80.

    Article  CAS  PubMed  Google Scholar 

  10. Haensler J, Szoka FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 1993;4:372–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hwang SJ, Bellocq NC, Davis ME. Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjug Chem. 2001;12:280–90.

    Article  CAS  PubMed  Google Scholar 

  12. Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit p-glycoprotein activity in vitro. J Pharm Sci. 2002;91:1991–2002.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang SJ, Davis ME. Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr Opin Mol Ther. 2001;3:183–91.

    CAS  PubMed  Google Scholar 

  14. Vinogradov SV, Bronich TK, Kabanov AV. Self-assembly of polyamine–poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem. 1998;9:805–12.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guerin N, Paradis G, Bronich TK, Alakhov VY, Kabanov AV. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 2000;7:126–38.

    Article  CAS  PubMed  Google Scholar 

  16. Ochietti B, Lemieux P, Kabanov AV, Vinogradov S, St-Pierre Y, Alakhov V. Inducing neutrophil recruitment in the liver of ICAM-1-deficient mice using polyethyleimine grafted with Pluronic P123 as an organ-specific carrier for transgenic ICAM-1. Gene Ther. 2002;9:939–45.

    Article  CAS  PubMed  Google Scholar 

  17. Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, Kissel T. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug Chem. 2005;16:785–92.

    Article  CAS  PubMed  Google Scholar 

  18. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83:97–111.

    Article  CAS  PubMed  Google Scholar 

  19. Alvarez-Lorenzo C, Barreiro-Iglesias R, Concheiro A, Iourtchenko L, Alakhov V, Bromberg L, Temchenko M, Deshmukh S, Hatton TA. Biophysical characterization of complexation of DNA with block copolymers of poly(2-dimethylaminoethyl) methacrylate, poly(ethylene oxide), and poly(propylene oxide). Langmuir. 2005;21:5142–8.

    Article  CAS  PubMed  Google Scholar 

  20. Gebhart CL, Sriadibhatla S, Vinogradov S, Lemieux P, Alakhov V, Kabanov AV. Design and formulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer. Bioconjug Chem. 2002;13:937–44.

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI. Novel branched poly(ethylenimine)–cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules. 2002;3:1197–207.

    Article  CAS  PubMed  Google Scholar 

  22. Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther. 2001;296:551–7.

    CAS  PubMed  Google Scholar 

  23. Seow WY, Yang YY. A class of cationic triblock amphiphilic oligopeptides as efficient gene delivery vectors. Adv Mater. 2009;21:86–90.

    Article  CAS  Google Scholar 

  24. Shendage DM, Frohlich R, Haufe G. Highly efficient stereoconservative amidation and deamidation of alpha-amino acids. Org Lett. 2004;6:3675–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hsu SH, Tang CM, Lin CC. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials. 2004;25:5593–601.

    Article  CAS  PubMed  Google Scholar 

  26. Yu L, Zhang H, Cheng SX, Zhuo RX, Li H. Study on the drug release property of cholesteryl end-functionalized poly(ε-caprolactone) microspheres. J Biomed Mater Res B Appl Biomater. 2006;77B:39–46.

    Article  CAS  Google Scholar 

  27. Wei H, Zhang XZ, Cheng C, Cheng SX, Zhuo RX. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials. 2007;28:99–107.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang WL, He JL, Liu Z, Ni PH, Zhu XL. Biocompatible and pH-responsive triblock copolymer mPEG-b-PCL-b-PDMAEMA: synthesis, self-assembly, and application. J Polym Sci A Polym Chem. 2010;48:1079–91.

    Article  CAS  ADS  Google Scholar 

  29. Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. 1980;22:479–88.

    Article  CAS  PubMed  Google Scholar 

  30. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D. Polyethylenimine but not the cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem. 1998;273:7507–11.

    Article  CAS  PubMed  Google Scholar 

  31. Dowty ME, Williams P, Zhang G, Hangstrom JE, Wolff JA. Plasmid DNA entry into post-mitotic nuclei of primary rat myotubes. Proc Natl Acad Sci USA. 1995;92:4572–6.

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (20704032), and National Basic Research Program of China (2009CB930300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, M., Li, F., Liu, Xh. et al. Self-assembled micellar aggregates based monomethoxyl poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(aminoethyl methacrylate) triblock copolymers as efficient gene delivery vectors. J Mater Sci: Mater Med 21, 2817–2825 (2010). https://doi.org/10.1007/s10856-010-4140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4140-3

Keywords

Navigation