Skip to main content

Advertisement

Log in

The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO2–0.36 ZnO–0.12 CaO–0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T g). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M w, 80,800) and water to form a GIC and the working time (T w) and the setting time (T s) of the resultant cements were then determined. The cement based on the solgel glass had a longer T w (78 s) as compared to the cement based on the melt derived glass (19 s). T s was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (σc) and biaxial flexure (σf), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19:485–94. doi:10.1016/S0142-9612(97)00128-2.

    Article  PubMed  CAS  Google Scholar 

  2. Akinmade AO, Nicholson JW. Glass-ionomer cements as adhesives. Part I. Fundamental aspects and their clinical relevance. J Mater Sci Mater Med. 1993;4:93–101.

    Google Scholar 

  3. Wilson AD, Prosser HJ, Powis DM. Mechanism of adhesion of polyelectrolyte cements to hydroxyapatite. J Dent Res. 1983;62:590–2.

    PubMed  CAS  Google Scholar 

  4. McLean JW. Glass ionomer cements. Br Dent J. 1988;164:293–300. doi:10.1038/sj.bdj.4806434.

    Article  PubMed  CAS  Google Scholar 

  5. Brook IM, Hatton PV. Glass ionomers: bioactive implant materials. Biomaterials. 1998;19:565–71. doi:10.1016/S0142-9612(98)00138-0.

    Article  PubMed  CAS  Google Scholar 

  6. Hatton PV, Hurrell-Gillingham K, Brook IM. Biocompatability of glass ionomer bone cements. J Dent. 2006;34:598–601. doi:10.1016/j.jdent.2004.10.027.

    Article  PubMed  CAS  Google Scholar 

  7. Boyd D, Towler MR, Wren AW, Clarkin OM. Comparison of an experimental bone cement with surgical Simplex p, Spineplex and Cortoss. J Mater Sci Mater Med. 2008;19:953–7. doi:10.1007/s10856-006-0060-7.

    Article  PubMed  CAS  Google Scholar 

  8. Nicholson JW, Braybrook JH, Wasson EA. The biocompatibility of glass-poly(alkenoate) glass-ionomer cements: a review. J Biomater Sci Polym Ed. 1991;2:277–85. doi:10.1163/156856291X00179.

    Article  PubMed  CAS  Google Scholar 

  9. Williams JA, Billington RW. Increase in compressive strength of glass ionomer restorative materials with respect to time: a guide to their suitability for use in posterior primary dentition. J Oral Rehabil. 1989;16:475–9. doi:10.1111/j.1365-2842.1989.tb01368.x.

    Article  PubMed  CAS  Google Scholar 

  10. Hantson P, Mahieu P, Gersdorff M, Sindic CJM, Lauwerys R. Encephalopathy with seizures after use of aluminium-containing bone cement. Lancet. 1994;344:1634–47. doi:10.1016/S0140-6736(94)90446-4.

    Article  Google Scholar 

  11. Hoang-Xuan K, Perrotte P, Dubas F, Philippon J, Poisson FM. Myoclonic encephalopathy after exposure to aluminium. Lancet. 1996;347:910–1. doi:10.1016/S0140-6736(96)91399-9.

    Article  PubMed  CAS  Google Scholar 

  12. Reusche E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, et al. Subacute fatal aluminium encephalopathy after reconstructive otoneurosurgery: a case report. Hum Pathol. 2001;32:1136–9. doi:10.1053/hupa.2001.28251.

    Article  PubMed  CAS  Google Scholar 

  13. Reusche E, Rohwer J, Forth W, Helms J, Geyer G. lonomeric cement and aluminium encephalopathy. Lancet. 1995;345:1633–4. doi:10.1016/S0140-6736(95)90138-8.

    Article  PubMed  CAS  Google Scholar 

  14. Boyd D, Clarkin OM, Wren AW, Towler MR. Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties. Acta Biomater. 2008;4:425–31. doi:10.1016/j.actbio.2007.07.010.

    Article  PubMed  CAS  Google Scholar 

  15. Boyd D, Li H, Tanner DA, Towler MR, Wall JG. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J Mater Sci Mater Med. 2006;17:489–94. doi:10.1007/s10856-006-8930-6.

    Article  PubMed  CAS  Google Scholar 

  16. Boyd D, Towler MR. The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. J Mater Sci Mater Med. 2005;16:843–50. doi:10.1007/s10856-005-3578-1.

    Article  PubMed  CAS  Google Scholar 

  17. Boyd D, Towler MR, Law RV, Hill R. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy. J Mater Sci Mater Med. 2006;17:397–402. doi:10.1007/s10856-006-8465-x.

    Article  PubMed  CAS  Google Scholar 

  18. Towler MR, Kenny S, Boyd D, Pembroke T, Buggy M, Guida A, et al. Calcium and zinc ion release from polyalkenoate cements formed from zinc oxide/apatite mixtures. J Mater Sci Mater Med. 2006;17:835–9. doi:10.1007/s10856-006-9843-0.

    Article  PubMed  CAS  Google Scholar 

  19. Towler MR, Kenny S, Boyd D, Pembroke T, Buggy M, Hill RG. Zinc ion release from novel hard tissue biomaterials. Biomed Mater Eng. 2004;14:565–72.

    PubMed  CAS  Google Scholar 

  20. Hench LL, West JK. The sol-gel process. Chem Rev. 1990;90:33–72. doi:10.1021/cr00099a003.

    Article  CAS  Google Scholar 

  21. Bertolini MJ, Zaghete MA, Gimenes R, Padovani GC. Determination of the properties of an experimental glass polyalkenoate cement prepared from niobium silicate powder containing fluoride. Dent Mater. 2008;24:124–8. doi:10.1016/j.dental.2007.03.005.

    Article  PubMed  CAS  Google Scholar 

  22. Taira M, Yamaki M. Preparation of SiO2-Al2O3 glass powders by the sol-gel process for dental applications. J Mater Sci Mater Med. 1995;6:197–200. doi:10.1007/BF00146855.

    Article  CAS  Google Scholar 

  23. Roy B, Jain H, Saha SK, Chakravorty D. Comparison of structure of alkali silicate glasses prepared by sol-gel and melt-quench methods. J Non-Cryst Solids. 1995;183:268–76. doi:10.1016/0022-3093(94)00633-4.

    Article  ADS  CAS  Google Scholar 

  24. Roy B, Jain H, Saha SK, Chakravorty D. Phase separation and structural differences between alkali silicate glasses prepared by the sol-gel and melt-quench methods. J Am Ceram Soc. 1995;81:2360–70.

    Article  Google Scholar 

  25. Roy R. Gel route to homogeneous glass preparation. J Am Ceram Soc. 1969;52:344. doi:10.1111/j.1151-2916.1969.tb11945.x.

    Article  CAS  Google Scholar 

  26. McCarthy GJ, Roy R. Gel route to homogeneous glass preparation II: gelling and desiccation. J Am Ceram Soc. 1971;54:539. doi:10.1111/j.1151-2916.1971.tb12202.x.

    Article  Google Scholar 

  27. Weinberg MC, Neilson GF. Phase separation behaviour of a metal organic derived sodium silicate glass. J Mater Sci. 1978;13:1206. doi:10.1007/BF00544726.

    Article  ADS  CAS  Google Scholar 

  28. Bertolini MJ, Zaghete MA, Gimenes R. Development of an experimental glass ionomer cement containing niobium and fluoride. J Non-Cryst Solids. 2005;351:3884–7. doi:10.1016/j.jnoncrysol.2005.10.008.

    Article  ADS  CAS  Google Scholar 

  29. International Organization for Standardization 9917. Dental water based cements (E). Case postale 56. Geneva, Switzerland. 1991; CH-11211.

  30. Williams JA, Billington RW, Pearson GJ. The effect of the disc support system on biaxial tensile strength of a glass ionomer cement. Dent Mater. 2002;18:376–9. doi:10.1016/S0109-5641(01)00053-7.

    Article  PubMed  CAS  Google Scholar 

  31. James PF, Iqbal Y, Jais US, Jordery S, Lee WE. Characterisation of silicate and phosphate glasses. J Non-Cryst Solids. 1997;219:17–29. doi:10.1016/S0022-3093(97)00247-0.

    Article  ADS  CAS  Google Scholar 

  32. Nicholson JW, Wilson AD. Acid-Base cements—their biomedical and industrial applications. Chemistry of solid state materials. Vol. 3. Cambridge; 1993.

  33. Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The influence of strontium substitution in fluorapatite glasses and glass-ceramics. J Non-Cryst Solids. 2004;336:223–9. doi:10.1016/j.jnoncrysol.2004.02.005.

    Article  ADS  CAS  Google Scholar 

  34. Prentice LH, Tyas MJ, Burrow MF. The effect of particle size distribution on an experimental glass ionomer cement. Dent Mater. 2005;21:505–10. doi:10.1016/j.dental.2004.07.016.

    Article  PubMed  CAS  Google Scholar 

  35. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, et al. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5. doi:10.1023/A:1021174912802.

    Article  PubMed  CAS  Google Scholar 

  36. Choi J-Y, Lee H-Y, Kim H-E. Bioactive sol-gel glass added ionomer cement for the regeneration of the structure. J Mater Sci Mater Med. 2008;19:3287–94. doi:10.1007/s10856-008-3464-8.

    Article  PubMed  CAS  Google Scholar 

  37. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass ionomer cements. Dent Mater. 2000;16:129–38. doi:10.1016/S0109-5641(99)00093-7.

    Article  PubMed  CAS  Google Scholar 

  38. Prosser HJ, Powis DR, Wilson AD. Glass ionomer cements of improved flexural strength. J Dent Res. 1986;65:146–8.

    PubMed  CAS  Google Scholar 

  39. Higgs WAJ, Lucksanasombool P, Higgs RJED, Swain MV. Evaluating acrylic and glass-ionomer cement strength using the biaxial flexure test. Biomaterials. 2001;22:1583–90. doi:10.1016/S0142-9612(00)00324-0.

    Article  PubMed  CAS  Google Scholar 

  40. Fennell B, Hill RG. The influence of poly(acrylic) acid molar mass and concentration on the properties of polyalkenoate cements. J Mater Sci. 2001;36:5193–202. doi:10.1023/A:1012445928805.

    Article  CAS  Google Scholar 

  41. Cho S-Y, Cheng AC. A review of glass ionomer restorations in the primary dentition. J Can Dent Assoc. 1999;65:491–5.

    PubMed  CAS  Google Scholar 

  42. Wilson AD, Hill RG, Warrens CP, Lewis BG. The influence of polyacid molecular weight on some properties of glass ionomer cements. J Dent Res. 1989;68:89–94.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance of both Enterprise Ireland (TD/2005/327) and PRTLI 4 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, A., Clarkin, O.M., Laffir, F.R. et al. The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements. J Mater Sci: Mater Med 20, 1991–1999 (2009). https://doi.org/10.1007/s10856-009-3781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3781-6

Keywords

Navigation