Skip to main content
Log in

Combinatorial coating of adhesive polypeptide and anti-CD34 antibody for improved endothelial cell adhesion and proliferation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Improved attachment, adhesion and proliferation of the surrounding mature endothelial cells (ECs) and circulating endothelial progenitor cells (EPCs) is of primary importance to realize the in situ rapid re-endothelialization of cardiovascular stents. To achieve this, a combinatorial coating of synthesized mussel adhesive polypeptide mimics as well as anti-CD34 antibody was constructed onto the devices through a novel adsorption method in this study. To immobilize the polypeptide and target antibody effectively, polycaprolactone (PCL) was first spin-coated onto the substrate as intermediate. The immobilization of polypeptide and antibody was confirmed by the changes of water contact angles and the attachment, growth of ECs and EPCs on the substrates, respectively. The results showed that after adhesive polypeptide or/and antibody immobilization, the hydrophilicity of coated PCL substrate (PCLS) was obviously improved. The amount of the immobilized antibody, determined by enzymelinked immunoassay (ELISA) method, was enhanced with the increase of antibody concentrations in the range from 5 to 25 μg/ml. The coatings after BSA blocking prevented the unspecific protein adsorption as monitored by fluorescent microscopy. The results of in vitro cell culture showed that compared with the PCLS, polypeptide/anti-CD34 antibody coating could effectively enhance the attachment, growth and adhesion of ECs and EPCs, in particular EPCs. A platelet adhesion experiment revealed that the blood compatibility of the PCLS after polypeptide/anti-CD34 antibody coating was also obviously improved. The results showed that the surface modification with adhesive polypeptide and anti-CD34 antibody will be a promising coating technique for the surface modification of the intravascular prostheses for rapid re-endothelialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Charles JM, David RH, Robert SS. Novel stents for the prevention of restenosis. TCM. 1977;7(7):245–9.

    Google Scholar 

  2. Crombez M, Chevallier P, Gaudreault RC, et al. Improving arterial prostheses neo-endothelializaiton: application of a proactive VEGF construct onto PTFE surfaces. Biomaterials. 2005;26:7402–9. doi:10.1016/j.biomaterials.2005.05.051.

    Article  PubMed  CAS  Google Scholar 

  3. Rossella F, Tommaso P. Drug-eluting stents in vascular intervention. Lancet. 2003;361:247–9. doi:10.1016/S0140-6736(03)12275-1.

    Article  Google Scholar 

  4. Michael K, Robert JC, Stephen MR. Medical device with coating that promotes endothelial cell adherence. 11 Dec 2003, Patent US2003/0229393A1.

  5. Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol. 1997;20:3–10.

    Article  Google Scholar 

  6. Sahil AP, Elazer RE. Endothelial cell delivery for cardiovascular therapy. Adv drug deliver Rev. 2000;42:139–61.

    Article  Google Scholar 

  7. Toshihiko S, Hisataka Y, Hiroaki S, et al. Fabrication of endothelial progenitor cell(EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials. 2003;24:2295–302. doi:10.1016/S0142-9612(03)00042-5.

    Article  Google Scholar 

  8. Greisler H, Gosselin C, Ren D, et al. Biointeractive polymers and tissue engineered blood vessels. Biomaterials. 1996;17:329–36. doi:10.1016/0142-9612(96)85571-2.

    Article  PubMed  CAS  Google Scholar 

  9. Feigoer P, Black RA, Hunt JA, et al. Attachment, morphology and adherence of human endothelial cells to vascular prostheses materials under the action of shear stress. Biomaterials. 2005;26:1457–66. doi:10.1016/j.biomaterials.2004.04.050.

    Article  Google Scholar 

  10. Santiago LY, Nowak RW, Rubin JP, et al. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials. 2006;27(15):2962–9. doi:10.1016/j.biomaterials.2006.01.011.

    Article  PubMed  CAS  Google Scholar 

  11. Qamar J, Neil S, Hunaid V, et al. Tumor necrosis factor-α antibody eluting stents reduces vascular smooth muscle cell proliferation in saphenous vein organ culture. Exp Mol Pathol. 2002;73:104–11. doi:10.1006/exmp.2002.2450.

    Article  Google Scholar 

  12. Gumpenberger T, Heitz J, Bauerle D, et al. Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials. 2003;24(28):5139–44. doi:10.1016/S0142-9612(03)00460-5.

    Article  PubMed  CAS  Google Scholar 

  13. Kaehler J, Zilla P, Fasol R, et al. Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. J Vasc Surg. 1989;9(4):535–41. doi:10.1067/mva.1989.vs0090535.

    Article  PubMed  CAS  Google Scholar 

  14. Chen YM, Shiraishi N, Satokawa H, et al. Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels. Biomaterials. 2005;26:4588–96. doi:10.1016/j.biomaterials.2004.11.025.

    Article  PubMed  CAS  Google Scholar 

  15. Stephane B, Mireille A, Jacqueline MB. Cell adhesive PET membranes by surface grafting of RGD peptidomimetics. Biomaterials. 2005;26:4576–87. doi:10.1016/j.biomaterials.2004.11.042.

    Article  Google Scholar 

  16. Yabin Z, Changyou G, Jiacong S. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials. 2002;23(24):4889–95. doi:10.1016/S0142-9612(02)00247-8.

    Article  Google Scholar 

  17. Ziyuan C. Swee-Hin Teoh. Surface modification of ultra thin poly (-caprolactone) films using acrylic acid and collagen. Biomaterials. 2004;25(11):1991–2001. doi:10.1016/j.biomaterials.2003.08.038.

    Article  Google Scholar 

  18. Giovanni M, Gabriela C, Cristina S, et al. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone. Biomaterials. 2005;26(23):4793–804. doi:10.1016/j.biomaterials.2004.11.047.

    Article  Google Scholar 

  19. Tiaw KS, Goh SW, Hong M, et al. Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials. 2005;26(7):763–9. doi:10.1016/j.biomaterials.2004.03.010.

    Article  PubMed  CAS  Google Scholar 

  20. Wang J, Liu CS, Lu X, et al. Co-polypeptides of 3, 4-dihydroxyphenylalanine and LL to mimic marine adhesive protein. Biomaterials. 2007;28:3456–68. doi:10.1016/j.biomaterials.2007.04.009.

    Article  PubMed  CAS  Google Scholar 

  21. Du WD, Xu ZS, Ma XL, et al. Biochip as a potential platform of serological interferon a2b antibody assay. J Biotechnol. 2003;106:87–100. doi:10.1016/j.jbiotec.2003.08.001.

    Article  PubMed  CAS  Google Scholar 

  22. Yuan Y, He H, Lee JL. Protein a-based immobilization of antibody onto polymeric microfluidic biochips for enzyme-linked immunosorbent assay. Biotechnol Bioeng. 2009;102:891–901. doi:10.1002/bit.22136.

    Article  PubMed  CAS  Google Scholar 

  23. Boura C, Menu P, Payan E, et al. Endothelial cells grown on thin polyelectrolyte multilayered films: an evaluation of a new versatile surface modification. Biomaterials. 2003;24:3521–30. doi:10.1016/S0142-9612(03)00214-X.

    Article  PubMed  CAS  Google Scholar 

  24. Juergen G, Joerg F, Erika E. A novel star PEG–derived surface coating for specific cell adhesion. J Biomed Mater Res. 2005;74A:607–17. doi:10.1002/jbm.a.30335.

    Article  Google Scholar 

  25. Green K. Mussel adhesive protein. In: Sierra DH, Saltz R, editors. Surgical adhesives and sealants, current technology and applications. Lancaster: Technomic; 1995. p. 19–27.

    Google Scholar 

  26. Sawyer AA, Hennessy KM, Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials. 2005;26:1467–75. doi:10.1016/j.biomaterials.2004.05.008.

    Article  PubMed  CAS  Google Scholar 

  27. Nisnevitch M, Kolog M, Trombka D, et al. Immobilization of antibodies onto glass wool. J Chromatogr B Analyt Technol Biomed Life Sci. 2000;738:217–23. doi:10.1016/S0378-4347(99)00514-9.

    Article  CAS  Google Scholar 

  28. He HB, Shirota T, Yasui H, Matsuda T. Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential. J Thorac Cardiovasc Surg. 2003;126:455–64. doi:10.1016/S0022-5223(02)73264-9.

    Article  PubMed  Google Scholar 

  29. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71–7. doi:10.1172/JCI8071.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the financial support from the National Science Fund for Distinguished Young Scholars of China (No.20425621), Major Program of National Natural Science Foundation of China (No. 50732002), Program of Shanghai Subject Chief Scientist (No. 07XD14008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, M., Yuan, Y., Liu, C. et al. Combinatorial coating of adhesive polypeptide and anti-CD34 antibody for improved endothelial cell adhesion and proliferation. J Mater Sci: Mater Med 20, 1513–1523 (2009). https://doi.org/10.1007/s10856-009-3715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3715-3

Keywords

Navigation