Skip to main content

Advertisement

Log in

The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed √time kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dqt/dt = α exp(−βqt). Values for α varied from 3.80 to 2.48 × 104, and for β from 7.19 × 10−3 to 0.1946, though only β showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to Mt/M of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R.W. Billington, J.A. Williams, G.J. Pearson, J. Dent. 34, 544 (2006)

    Article  CAS  Google Scholar 

  2. V. Lind, G. Wennerholm, S. Nystrom, Acta Odontol. Scand. 22, 233 (1964)

    Article  Google Scholar 

  3. L. Forsten, Scand. J. Dent. Res. 85, 503 (1977)

    CAS  Google Scholar 

  4. R.J.G. De Moor, R.M.H. Verbeeck, E.A.P. De Maeyer, Dent. Mater. 12, 88 (1996)

    Article  Google Scholar 

  5. A.D. Wilson, D.M. Groffman, A.T. Kuhn, Biomaterials 6, 431 (1985)

    Article  CAS  Google Scholar 

  6. L. Forsten, Scand. J. Dent. Res. 91, 241 (1991)

    Google Scholar 

  7. W.A.G. El-Badrawy, D. McComb, R.E. Wood, Dent. Mater. 29, 63 (1993)

    Article  Google Scholar 

  8. A.M.J. De Witte, E.A.P. De Maeyer, R.M.H. Verbeeck, Biomaterials 24, 1995 (2003)

    Article  CAS  Google Scholar 

  9. R.W. Billington, P.C. Hadley, M.R. Towler, G.J. Pearson, J.A. Williams, Biomaterials 21, 377 (2000)

    Article  CAS  Google Scholar 

  10. S.B. Mitra, J. Dent. Res. 70, 75 (1991)

    CAS  Google Scholar 

  11. H. Forss, J. Dent. Res. 72, 1257 (1993)

    CAS  Google Scholar 

  12. D. Sales, D. Sae-Lee, S. Matsuya, I.D. Ana, Biomaterials 24, 1687 (2003)

    Article  CAS  Google Scholar 

  13. J.W. Nicholson, B. Czarnecka, J. Oral Rehabil. 31, 665 (2004)

    Article  CAS  Google Scholar 

  14. M. Rothwell, H.M. Anstice, G.J. Pearson, J. Dent. 26, 591 (1998)

    Article  CAS  Google Scholar 

  15. X. Xu, J.O. Burgess, Biomaterials 24, 2451 (2003)

    Article  CAS  Google Scholar 

  16. A.D. Wilson, J.W. Nicholson, Acid-Base Cements (The University Press, Cambridge, 1993)

    Google Scholar 

  17. J.W. Nicholson, B. Czarnecka, H. Limanowska-Shaw, J. Mater. Sci. Mater. Med. 10, 449 (1999)

    Article  CAS  Google Scholar 

  18. B. Czarnecka, H. Limanowska-Shaw, J.W. Nicholson, J. Mater. Sci.. Mater. Med. 14, 601 (2003)

    Article  CAS  Google Scholar 

  19. Z. Ram, I. Gedalia, I. Reissten, J. Dent. Res. 52, 1344 (1973)

    CAS  Google Scholar 

  20. R.W. Billington, P.C. Hadley, J.A. Williams, G.J. Pearson, Biomaterials 22, 2507 (2001)

    Article  CAS  Google Scholar 

  21. M.J.D. Low, Chem. Rev. 60, 267 (1960)

    Article  CAS  Google Scholar 

  22. N.H. De Leeuw, J. Phys. Chem. B 108, 1809 (2004)

    Article  CAS  Google Scholar 

  23. J.D.B. Featherstone, Community Dent. Oral Epidemiol. 27, 31 (1999)

    Article  CAS  Google Scholar 

  24. D.J. White, G.H. Nancollas, J. Dent. Res. 69, 587 (1990)

    CAS  Google Scholar 

  25. I. Abe, S. Iwasaki, T. Tokimoto, N. Kawasaki, T. Nakamura, S. Tanada, J. Colloid Interface Sci. 275, 35 (2004)

    Article  CAS  Google Scholar 

  26. S.E.H. Niven, R.M. Moore, Geochim. Cosmochim. Acta. 57, 2169 (1993)

    Article  Google Scholar 

  27. N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Waste Manag. 26, 260 (2006)

    Article  CAS  Google Scholar 

  28. N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Environ. Technol. 27, 1089 (2006)

    Article  CAS  Google Scholar 

  29. S.H. Chien, W.R. Clayton, Soil Sci. Am. J. 44, 265 (1980)

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Nuffield Foundation (in the form of a vacation scholarship to KP) and from the University of Greenwich (for a postgraduate student bursary to SEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawluk, K., Booth, S.E., Coleman, N.J. et al. The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride. J Mater Sci: Mater Med 19, 3035–3039 (2008). https://doi.org/10.1007/s10856-008-3443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3443-0

Keywords

Navigation