Skip to main content

Advertisement

Log in

Development and bio-electrochemical characterization of a novel TiO2–SiO2 mixed oxide coating for titanium implants

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium and its alloys, the most commonly used materials for dental and orthopaedic implants are generally coated with bioactive materials such as sol–gel derived titania, silica and calcium phosphate in order to render these materials bioactive. In the present work a coating containing nanosized titania particles having anatase structure was developed on titanium substrate by thermal decomposition of titanium tetrachloride in isopropanol. A modified titania–silica mixed oxide coating was developed by incorporating the required amount of silica in the coating system. The presence of silica at small weight percentage caused improvement of adhesion and corrosion resistance of the coating. In vitro bioactivity tests were performed in 1.5 Kokubo’s simulated body fluid after alkaline treatment of the titania/titania–silica coatings and the performance was compared with that of the titania coating developed by simple thermal oxidation. TF-XRD, FTIR and SEM-EDAX were used to investigate the microstructural morphology and crystallinity of the coatings. Elemental analysis of simulated body fluid was carried out using ICP-AES and spectrophotometry. Enhanced biogrowth was facilitated on the titania coating incorporated with low silica content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Moritz, S. Areva, J. Wolke, T. Peltola, Biomaterials 26, 4460 (2005)

    Article  CAS  Google Scholar 

  2. S. Lin, R.Z.L. Geros, J.P.L. Geros, J. Biomed. Mater. Res. 66A, 819 (2003)

    Article  CAS  Google Scholar 

  3. X. Zhu, J. Chen, L. Sceideler, R. Reichl, J. Geis-Gerstorfer, Biomaterials 25, 4087 (2004)

    Article  CAS  Google Scholar 

  4. D.F. William (ed.), Titanium and Titanium Alloys, vol. 1. (CRC Press, Inc., Boca Raton FL, 1981), p. 9

    Google Scholar 

  5. Q. Liu, J. Ding, F.K. Mante, S.L. Wunder, G.R. Baran, Biomaterials 23, 3103 (2002)

    CAS  Google Scholar 

  6. A. Bigi, E. Boanini, B. Barbara, A. Facchini, S. Panzavolta, F. Segatti, L. Sturba, Biomaterials 26, 4085 (2005)

    Article  CAS  Google Scholar 

  7. H. Ishizawa, M. Ogino, J. Biomed. Mater. Res. 29, 1071 (1995)

    Article  CAS  Google Scholar 

  8. S. Areva, V. Aaritalo, S. Tuusa, M. Jokinen, M. Linden, T. Peltola, J. Mater. Sci. Mater. Med. 18, 1633 (2007)

    Article  CAS  Google Scholar 

  9. M. Shirkhanzadeh, J. Mater. Sci. Mater. Med. 3, 322 (1992)

    Article  CAS  Google Scholar 

  10. F. Brossa, B. Looman, R. Dietra, E. Sabbioni, M. Gallorini, E. Orvini, in High Tech Ceramics, ed. by P. Vincenzinia (Elsevier, Amsterdam, 1987), p. 99

    Google Scholar 

  11. C.M. Lin, S.K. Yen, J. Mater. Sci. Mater. Med. 16, 889 (2005)

    Article  CAS  Google Scholar 

  12. Y. Zhu, L. Zhang, C. Gao, L. Cao, J. Mater. Sci. Mater. Med. 35, 4049 (2000)

    CAS  Google Scholar 

  13. J. Wang, P. Layrolle, M. Stigter, K. De Groot, Biomaterials 25, 583 (2004)

    Article  CAS  Google Scholar 

  14. S.M.A. Shibli, V.S. Saji, Corros. Sci. 47, 2213 (2005)

    Article  CAS  Google Scholar 

  15. F. Barrere, P. Layrolle, C.A.V. Blitterswijk, K. De Groot, Biomaterials 23, 2211 (2002)

    Article  CAS  Google Scholar 

  16. F. Barrere, C.A.V. Blitterswijk, K. De Groot, P. Layrolle, Mater. Res. Soc. Symp. Proc. 599, 135 (2000)

    CAS  Google Scholar 

  17. C.M. De Assis, L.C.O. De Vercik, M.L. Dos Santos, M.V.L. Fook, A.C. Guastaldi, Mater. Res. 8, 207 (2005)

    Google Scholar 

  18. L. Jonasova, F.A. Muller, J.S. Helebrant, P. Greil, Biomaterials 23, 3095 (2002)

    Article  CAS  Google Scholar 

  19. I.C. Lavos-Valerreto, S. Wolynec, I. Ramires, A.C. Guastaldi, I. Costa, J. Mater. Sci. Mater. Med. 15, 55 (2004)

    Article  Google Scholar 

  20. JCPDS International Centre for Diffraction Data, Powder Diffraction File (Swarthmore, PA, 1980)

  21. F. Chiker, J.P.H. Nogier, F. Launay, J.L. Bonardet, Appl. Catal. A 243, 309 (2003)

    Article  CAS  Google Scholar 

  22. Y.P. Fer, C.H. Lin, C.S. Hsu, J. Alloys Compd 391, 110 (2005)

    Article  CAS  Google Scholar 

  23. D. Sun, Y. Huang, B. Han, G. Yang, Langmuir 22, 4793 (2006)

    Article  CAS  Google Scholar 

  24. I. Barba, A.J. Salinas, M.V. Regi, J. Biomed. Mater. Res. 47, 243 (1997)

    Article  Google Scholar 

  25. F. Barrere, C.M.V.D. Valk, D. Raj, C.A.V. Blitterswijk, K. De Groot, P. Layrolle, J. Biomed. Mater. Res. 64A, 378 (2003)

    Article  CAS  Google Scholar 

  26. S.N. Boon, I. Annergren, A.M. Soutar, K.A. Khor, A.E.W. Jarfors, Biomaterials 26, 1087 (2005)

    Article  CAS  Google Scholar 

  27. H.B. Wen, J.R. De Wijn, F.Z. Cui, K. De Groot, Biomaterials 19, 215 (1998)

    Article  CAS  Google Scholar 

  28. L.M.D. Silva, K.C. Fernades, L.A.D. Faria, J.F.C. Boodts, Electrochim. Acta 49, 4893 (2004)

    Article  CAS  Google Scholar 

  29. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. De Groot, J. Biomed. Mater. Res. 28, 7 (1994)

    Article  CAS  Google Scholar 

  30. Y. Man, K. Xu, J. Lu, J. Mater. Sci. Mater. Med. 35, 4049 (2000)

    Google Scholar 

  31. H.M. Kim, T. Himeno, M. Kawashita, J.H. Lee, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 67A, 1305 (2003)

    Article  CAS  Google Scholar 

  32. H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 55, 185 (2001)

    Article  CAS  Google Scholar 

  33. P. Somasundaran B. Markovic, in Interfacial Properties of Calcium Phosphate, ed. by Z. Amjad (Tran Tech Publications, Ae dermannsdor, Switzerland, 1998), p. 85

    Google Scholar 

  34. W. Neuman, M. Neuman, The Chemical Dynamics of Bone Mineral (University of Chicago Press, Chicago, 1958)

    Google Scholar 

  35. J. Gamble, Chemical Anatomy, Physiology and Pathology of Extracellular Fluid (Harvard University Press, Cambridge, MA, 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. A. Shibli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibli, S.M.A., Mathai, S. Development and bio-electrochemical characterization of a novel TiO2–SiO2 mixed oxide coating for titanium implants. J Mater Sci: Mater Med 19, 2971–2981 (2008). https://doi.org/10.1007/s10856-008-3409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3409-2

Keywords

Navigation