Skip to main content
Log in

Nanoscale surface topography enhances cell adhesion and gene expression of madine darby canine kidney cells

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Substrate topography is one of the key factors that influence cell behavior, such as cell attachment, adhesion, proliferation and differentiation. In the present work, nanostructures were produced on polystyrene Petri dish by polarized laser irradiation with the wavelength of 266 nm and the energy of 3.0 mJ/cm2. Cell adhesion, growth and gene expression of Madine darby canine kidney (MDCK) cells cultured on smooth and nanogrooved substrates were investigated. The results indicated that cells preferred to adhere and grow on nanogrooved substrate. The distribution of cell cycle for cells on smooth substrates was different from that on nanogrooved substrate. The percentage of G1 phase cells on nanogrooved substrate (48.6 ± 1.4%) was lower than that on smooth substrate (57.6 ± 4.4%), while the percentage of cells on nanogrooved substrate in S (30.2 ± 0.5%) and G2/M (21.2 ± 1.1%) phase was higher than those on smooth substrate (25.1 ± 1.5% and 17.3 ± 3.3%, respectively). Moreover, the gene expression of cyclin D1 and keratin 18, which was examined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), was significantly enhanced by nanogrooves, with an increase of cyclin D1 mRNA by 98% and an increase of keratin 18 mRNA by 75%. In conclusion, the nanogrooved surface features on polystyrene could alter cell cycle and enhance gene expression of cyclin D1 and keratin 18 in MDCK cells, which partly explained the increased cell adhesion and growth on nanogrooved substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. MATSUZAKA, M. YOSHINARI, M. SHIMONO and T. INOUE, J. Biomed. Mater. Res. 68A (2004) 227

    Article  CAS  Google Scholar 

  2. A. ANDERSSON, F. BACKHED, A. V. EULER, A. R. DAHLFORS, D. SUTHERLAND and B. KASEMO, Biomaterials 24 (2003) 3427

    Article  CAS  Google Scholar 

  3. D. M. BRUNETTE, Exp. Cell Res. 164 (1986) 11

    Article  CAS  Google Scholar 

  4. G. A. DUNN and A. F. BROWN, J. Cell Sci. 83 (1986) 313

    CAS  Google Scholar 

  5. A. CURTIS and C. WILKINSON, Trends Biotechnol. 19 (2001) 97

    Article  CAS  Google Scholar 

  6. T. KONNO, H. HASUDA, K. ISHIHARA and Y. ITO, Biomaterials 26 (2005) 1381

    Article  CAS  Google Scholar 

  7. K. E. SCHMALENBERG and K. E. UHRICH, Biomaterials 26 (2005) 1423

    Article  CAS  Google Scholar 

  8. CH. H. KIM, M. S. KHIL, H. Y. KIM, H. U. LEE and K. Y. JAHNG, J. Biomed. Mater. Res. 78B (2006) 283

    Article  CAS  Google Scholar 

  9. Y. ZHU, M. F. LEONG, W. F. ONG, M. B. CHAN-PARK and K. S. CHIAN, Biomaterials 28 (2007) 861

    Article  CAS  Google Scholar 

  10. A. I. TEIXEIRA, G. A. MCKIE, J. D. FOLEY, P. J. BERTICS, P. F. NEALEY and C. J. MURPHY, Biomaterials 27 (2006) 3945

    Article  CAS  Google Scholar 

  11. S. ILKHANIZADEH, A. I. TEIXEIRA and O. HERMANSON, Biomaterials 28 (2007) 3936

    Article  CAS  Google Scholar 

  12. P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, J. Cell Sci. 99 (1991) 73

    Google Scholar 

  13. A. ANDERSSON, J. BRINK, U. LIDBERG and D. S. SUTHERLAND, IEEE T. Nanobiosci. 2 (2003) 49

    Article  Google Scholar 

  14. K. SIMONS and S. D. FULLER, Annu. Rev. Cell Biol. 1 (1985) 243

    Article  CAS  Google Scholar 

  15. P. CLARK, P. CONNOLLY, A. S. G. CURTIS, J. A. T. DOW and C. D. W. WILKINSON, Development 108 (1990) 635

    CAS  Google Scholar 

  16. B. S. ZHU, Q. Q. ZHANG, Q. H. LUA, Y. H. XU, J. YIN, J. HU and Z. G. WANG, Biomaterials 25 (2004) 4215

    Article  CAS  Google Scholar 

  17. G. RADEVA, T. PETROCELLI, E. BEHREND, C. LEUNGHAGESTEIJN, J. FILMUS, J. SLINGERLAND and S. DEHAR, J. Biol. Chem. 272 (1997) 13937

    Article  CAS  Google Scholar 

  18. L. FONTAO, J. STUTZMANN, P. GENDRY and J. F. LAUNAY, Exp. Cell Res. 250 (1999) 298

    Article  CAS  Google Scholar 

  19. M. CSETE and Z. BOR, Appl. Surf. Sci. 133 (1998) 5

    Article  CAS  Google Scholar 

  20. M. J. DALBY, S. CHILDS, M. O. RIEHLE, H. J. H. JOHNSTONE, S. AFFROSSMAN and A. S. G. CURTIS, Biomaterials 24 (2003) 927

    Article  CAS  Google Scholar 

  21. S. J. LEE, J. S. CHOI, K. S. PARK, G. KHANG, Y. M. LEE and H. B. LEE, Biomaterials 25 (2004) 4699

    Article  CAS  Google Scholar 

  22. T. HASEGAWA, H. OGUCHI, M. MIZUNO and Y. KUBOKI, Jpn. J. Oral. Biol. 36 (1994) 383

    Google Scholar 

  23. R. T. GETTENS, Z. BAI and J. L. GILBERT, J. Biomed. Mater. Res. 72(A) (2005) 246

    Article  Google Scholar 

  24. C. W. SUH, M. Y. KIM and J. B. CHOO, J. Biotechnol. 112 (2004) 67

    Article  Google Scholar 

  25. R. L. JULIANO and S. HASKILL, J. Cell Biol. 120 (1993) 577

    Article  CAS  Google Scholar 

  26. C. RENNER, B. SACCA and L. MORODER, Biopolymers 76 (2004) 34

    Article  CAS  Google Scholar 

  27. N. D. GALLANT, K. E. MICHAEL and A. J. GARCIA, Mol. Biol. Cell 16 (2005) 4329

    Article  CAS  Google Scholar 

  28. K. S. MATLIN, B. HAUS and A. ZUK, Methods 30 (2003) 235

    Article  CAS  Google Scholar 

  29. G. KUMAR, Y. C. WANG, C. CO and C. C. HO, Langmuir 19 (2003) 10550

    Article  CAS  Google Scholar 

  30. S. LAN, M. VEISEH and M. Q. ZHANG, Biosen. Bioelectro. 20 (2005) 1697

    Article  CAS  Google Scholar 

  31. J. DING, R. H. ZHANG, J. X. LI, C. F. XUE and C. S. HUANG, Mol. Cell. Biochem. 287 (2006) 117

    Article  CAS  Google Scholar 

  32. D. TSURUTA, S. B. HOPKINSON and J. C. R. JONES, Cell Motil. Cytoskel. 54 (2003) 122

    Article  CAS  Google Scholar 

  33. P. A. COULOMBE and P. WONG, Nat. Cell Biol. 6(8) (2004) 699

    Article  CAS  Google Scholar 

  34. H. HERRMANN and U. AEBIANNU, Rev. Biochem. 73 (2004) 749

    Article  CAS  Google Scholar 

  35. D. DEPIANTOA and P. A. COULOMBE, Exp. Cell Res. 301 (2004) 68

    Article  Google Scholar 

  36. A. WASEEM, U. KARSTEN, I. M. LEIGH, P. PURKIS, N. H. WASEEM and E. B. LANE, Biochemistry 43 (2004) 1283

    Article  CAS  Google Scholar 

  37. S. YAMADA, D. WIRTZ and P. A. COULOMBE, J. Struct. Biol. 143 (2003) 45

    Article  CAS  Google Scholar 

  38. R. WINFRIED, H. ALESSANDRA, M. NIMA, X. F. FRANZ and A. JUDITH, Med. Pediatr. Oncol. 37 (2001) 357

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 60577049 and 30572053), “Kua Shi Ji Program” of the Ministry of Education of China, and a Fundamental Key Project (No. 05JC14019) of the Science and Technology Commission of Shanghai Municipal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. H. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C.Y., Zhu, B.S., Wang, X.F. et al. Nanoscale surface topography enhances cell adhesion and gene expression of madine darby canine kidney cells. J Mater Sci: Mater Med 19, 2215–2222 (2008). https://doi.org/10.1007/s10856-007-3323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3323-z

Keywords

Navigation