Skip to main content

Advertisement

Log in

The role of ammonium citrate washing on the characteristics of mechanochemical–hydrothermal derived magnesium-containing apatites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The role of citrate washing on the physical and chemical characteristics of magnesium-substituted apatites (HAMgs) was performed. HAMgs were synthesized by a mechanochemical–hydrothermal route at room temperature in as little as 1 h, which is five times faster than our previous work. Magnesium-substituted apatites had concentrations as high as 17.6 wt% Mg with a corresponding specific surface area (SSA) of 216 m2/g. A systematic study was performed to examine the influence of increasing magnesium content on the physical and chemical characteristics of the reaction products. As the magnesium content increased from 0 to 17.6 wt%, magnesium-doped apatite crystallite size decreased from 12 to 8.8 nm. The Mg/(Mg + Ca) ratio in the product was enriched relative to that used for the reacting precursor solution. During mechanochemical–hydrothermal reaction, magnesium doped apatites co-crystallize with magnesium hydroxide. Citrate washing serves to remove the magnesium hydroxide phase. The concomitant increase in surface area results because of the removal of this phase. Possible mechanisms for magnesium hydroxide leaching are discussed to explain the measured trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. REY, in “Calcium Phosphates in Biological and Industrial Systems”, edited by Z. AMJAD, Kluwer Academic Publishers, Boston, 1998 p. 217

  2. E. BERTONI, A. BIGI, G. COJAZZI, M. GANDOLFI, S. PANZAVOLTA and N. ROVERI, J. Inorg. Biochem. 72 (1998) 29

    Article  CAS  Google Scholar 

  3. H. AOKI, (1991) Science and medical applications of hydroxyapaptite. Tokyo: Japanese Association of Apatite Science, p. 1

    Google Scholar 

  4. K. De GROOT, in “Bioceramics of calcium phosphate”, edited by K. DE GROOT, CRC Press, Roca Raton, 1983, p. 131

  5. J. C. ELLIOTT, (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier, p. 111

    Google Scholar 

  6. R. Z. LeGEROS, (1991) “Monographs in Oral Science” edited by H. M. MYERS, vol. 15. Karger, Basel, p. 46

  7. A. BIGI, E. FORESTI, R. GREGORINI, A. RIPAMONTI, N. ROVERI and J. S. SHAH, Calcif. Tissue Int. 50 (1992) 439

    Article  CAS  Google Scholar 

  8. W. G. M. Van Den HOEK, T. P. FEENSTRA and P. L. De BRUYN, J. Phys. Chem. 84 (1980) 3312

    Article  Google Scholar 

  9. A. S. HALLSWORTH, C. ROBINSON and J. A. WEATHERELL, Caries Res. 7 (1973) 345

    CAS  Google Scholar 

  10. T. P. FEENSTRA, J. HOP and P. L. DEBRUYN, J. Colloid Interface Sci. 83 (1981) 583

    Article  CAS  Google Scholar 

  11. A. BIGI, G. FALINI, E. GORESTI, M. GAZZANO, A. RIPANONTI and N. ROVERI, J. Inorg. Biochem. 49 (1993) 69

    Article  CAS  Google Scholar 

  12. I. MAYER, R. SCHLAM and F. D. B. FEATHERSTONE, J. Inorg. Biochem. 66 (1997) 1

    Article  CAS  Google Scholar 

  13. A. BIGI, G. FALINI, E. FORESTI, M. GAZZANO, A. RIPAMONTI and N. ROVERI, Acta Cryst. B52 (1996) 87

    CAS  Google Scholar 

  14. A. YASUKAWA, S. OUCHI, K. KANDORI and T. ISHIKAWA, J. Mater. Chem. 6 (1996) 1401

    Article  CAS  Google Scholar 

  15. T. HANAZAWA, M. AIZAWA, F. S. HOWELL and K. ITATANI, Phosphorus Res. Bull. 9 (1999) 5

    CAS  Google Scholar 

  16. A. TAMPIERI, G. CELOTTI, E. LANDI and M. SANDRI, Key Eng. Mater. 254 (2004) 264

    Google Scholar 

  17. K. J. LILLEY, Y. GBURECK, J. C. KNOWLES, D. F. FARRAR and J. E. BARRALET, J. Mater. Sci.: Mater. Med. 16 (2005) 455

    Article  CAS  Google Scholar 

  18. M. OKAZAKI, J. TAKAHASHI and K. KIMURA, Caries Res. 20 (1986) 324

    Article  CAS  Google Scholar 

  19. P. SHUK, W. L. SUCHANEK, T. HAO, E. GULLIVER, R. E. RIMAN, M. SENNA, K. S. TENHUISEN and V. F. JANAS, J. Mater. Res. 16 (2001) 1231

    CAS  Google Scholar 

  20. C.-W. CHEN, C. S. OAKES, K. BYRAPPA, R. E. RIMAN, K. BROWN, K. S. TENHUISEN and V. F. JANAS, J. Mater. Chem. 14 (2004) 2425

    Article  CAS  Google Scholar 

  21. C.-W. CHEN, R. E. RIMAN, K. BROWN, K. S. TENHUISEN and V. F. JANAS, J. Crystal Growth 270 (2004) 615

    Article  CAS  Google Scholar 

  22. W. L. SUCHANEK, K. BYRAPPA, P. SHUK, R. E. RIMAN, V. F. JANAS and K. S. TENHUISEN, Biomaterials 25 (2004) 4647

    Article  CAS  Google Scholar 

  23. R. A. NYQUIST and O. K. RONALD, (1971) Infrared spectra of inorganic compounds. New York: Academic Press, p. 235

    Google Scholar 

  24. A. TAMPIERI, G. CELOTTI, S. SPRIO and C. MINGAZZINI, Mater. Chem. Phys. 64 (2000) 54

    Article  CAS  Google Scholar 

  25. S. SCHNEIDER, (1991) Ceramics and Glasses, Engineered Materials Handbook, Vol 4. ASM International, p. 427

Download references

Acknowledgments

This research was supported by the Johnson & Johnson Center for Biomaterials and Advanced Technologies, the Center for Biomedical Devices at Rutgers University, and the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CW., Suchanek, W.L., Shuk, P. et al. The role of ammonium citrate washing on the characteristics of mechanochemical–hydrothermal derived magnesium-containing apatites. J Mater Sci: Mater Med 18, 1413–1421 (2007). https://doi.org/10.1007/s10856-006-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0068-z

Keywords

Navigation