Skip to main content
Log in

Construction of rod-like micro/nano structure and its effects on the electrochemical energy storage performance of lithium-rich manganese-based cathode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

By adjusting the oxidant amount and hydrothermal reaction temperature, a rod-shaped MnO2 sample was formed. Taking it as the manganese source, a Li-rich manganese-based cathode material (LMCM) with obvious rod-like micro/nano structure was obtained by high-temperature solid-state method. After conducting tests on the morphology structure and electrochemical performance, the results indicated that the micro/nano structure was made up of polyhedral nano-scale primary particles and rod-like micro-scale secondary particles. The obtained LMCM had the standard α-NaFeO2 crystal structure. At the charge and discharge rate of 0.1C, its initial discharge specific capacity and Coulombic efficiency were 267 mAh·g−1 and 85.8%, respectively, which was obviously better than those of LMCM prepared with commercially purchased MnO2 (222 mAh·g−1 and 76.3%) by the same operations. Additionally, the LMCM with rod-like micro/nano structure also demonstrated a high rate performance and a high cycle capacity retention (140 mAh·g−1 discharge capacity at 5C) after 50 cycles of charge / discharge), further indicating a promising application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. X.D. Xu, S. Lee, S. Jeong, Y. Kim, J. Cho, Recent progress on nanostructured 4 V cathode materials for Li-ion batteries for mobile electronics. Mater. Today 12, 487 (2013)

    Article  Google Scholar 

  2. J. Yan, X. Liu, B. Li, Recent progress in Li-rich layered oxides as cathode materials f-or Li-ion batteries. RSC Adv. 4, 63268 (2014)

    Article  CAS  Google Scholar 

  3. J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries. J. Power. Sources 282, 299 (2015)

    Article  CAS  Google Scholar 

  4. J.J. Xu, X.Y. Cai, S.M. Cai, Y.X. Shao, C. Hu, S.R. Lu, S.J. Ding, High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 6, 5 (2023)

    Article  Google Scholar 

  5. C.Q. Du, F. Zhang, C.X. Ma, J.W. Wu, Z.Y. Tang, X.H. Zhang, D.Y. Qu, Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery. Ionics 22, 209 (2015)

    Article  Google Scholar 

  6. J. Wang, B. Qiu, H.L. Cao, Y.G. Xia, Z.P. Liu, Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2–0.4LiNi(x)Mn(y)Co(1-x-y)O(2) cathode materials for lithium-ion. J. Power Sources. 218, 128 (2012)

    Article  CAS  Google Scholar 

  7. M. Chen, X.D. Xiang, D.P. Chen, D.R. Chen, Y.H. Liao, Q.M. Huang, W.S. Li, Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery. J. Power. Sources 279, 197 (2015)

    Article  CAS  Google Scholar 

  8. D. Luo, P. Shi, S.H. Fang, L. Yang, S.I. Hirano, Unraveling the effect of exposed facets on voltage decay and capacity fading of Li-rich layered oxides. J. Power. Sources 364, 121 (2017)

    Article  CAS  Google Scholar 

  9. C.X. Zhang, B. Wei, M.Y. Wang, D.T. Zhang, T. Uchiyama, C.P. Liang, L.B. Chen, Y. Uchimoto, R.F. Zhang, P. Wang, Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy Storage Mater. 46, 512 (2022)

    Article  Google Scholar 

  10. G.R. Chen, J. An, Y.M. Meng, C.Y. Yuan, B. Matthews, F. Dou, L.F. Shi, Y.F. Zhou, P.A. Song, G. Wu, Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy 57, 157 (2019)

    Article  CAS  Google Scholar 

  11. W. Pan, W.J. Peng, G.C. Yan, H.J. Guo, Z.X. Wang, X.H. Li, W.H. Gui, J.X. Wang, N. Chen, Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 Coating. Energy Technol. 6, 2139 (2018)

    Article  CAS  Google Scholar 

  12. M.M. Zhou, J.J. Zhao, X.D. Wang, J. Shen, W.H. Tang, Y.R. Deng, R.P. Liu, Surface engineering for high stable lithium-rich manganese-based cathode materials. Chin. Chem. Lett. 34, 107793 (2023)

    Article  CAS  Google Scholar 

  13. A. Abouimrane, O.C. Compton, H. Deng, I. Belharouak, D.A. Dikin, S.T. Nguyen, K. Amine, Improved rate capability in a high-capacity layered cathode material via thermal reduction. Electrochem. Solid State Lett. 9, A126 (2011)

    Article  Google Scholar 

  14. J. Li, L. Zhang, L. Yu, W.Z. Fan, Z.S. Wang, X.R. Yang, Y.L. Lin, L.D. Xing, M.Q. Xu, W.S. Li, Understanding interfacial properties between Li-rich layered oxide and electrolyte containing triethyl borate. J. Phys. Chem. C. 47, 26899 (2016)

    Article  Google Scholar 

  15. Y.P. Deng, F. Fu, Z.G. Wu, Z.W. Yin, T. Zhang, J.T. Li, L. Huang, S.G. Sun, Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J. Mater. Chem. A 4, 257 (2015)

    Article  Google Scholar 

  16. Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. Z.H. Tang, Z.X. Wang, X.H. Li, W.J. Peng, Preparation and electrochemical properties of Co-doped and none-doped Li[LixMn065(1–x)Ni035(1–x)]O2 cathode materials for lithium battery batteries. J. Power Sources 204, 187 (2012)

    Article  CAS  Google Scholar 

  18. U. Davut, Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery. Solid State Ionics. 281, 73 (2015)

    Article  Google Scholar 

  19. J.F. Li, C. Zhan, J. Lu, Y.F. Yuan, R. Shahbazian-Yassar, X.P. Qiu, K. Amine, Improve first-cycle efficiency and rate performance of layered-layered Li1.2Mn0.6Ni0.2O2 using oxygen stabilizing dopant. ACS Appl. Mater. Interfaces 7, 16040 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. L.N. Cong, X.G. Gao, S.C. Ma, X. Guo, Y.P. Zeng, L.H. Tai, R.S. Wang, H.M. Xie, L.Q. Sun, Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12. Electrochem. Acta. 115, 399 (2014)

    Article  CAS  Google Scholar 

  21. M. Wang, M. Luo, Y.B. Chen, L. Chen, S. Yan, Y.Z. Ren, M. Chu, A new approach to improve the electrochemical performance of Li-rich cathode material by precursor pretreatment. J. Alloys Compd. 696, 891 (2017)

    Article  CAS  Google Scholar 

  22. C. Yu, G.S. Li, X.F. Guan, J. Zheng, D. Luo, L.P. Li, The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3Li2MnO3·0.7LiMn1/3Ni1/3Co1/3O2. Phys. Chem. Chem. Phys. 14, 12368 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. A. Boulineau, L. Simonin, J.F. Colin, E. Canevet, L. Daniel, S. Patoux, Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem. Mater. 24, 3558 (2012)

    Article  CAS  Google Scholar 

  24. M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, S.A. Hackney, Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 8, 1531 (2006)

    Article  CAS  Google Scholar 

  25. L. Liu, C. Lu, M.W. Xiang, Y. Zhang, H. Liu, H. Wu, Template-assisted synthesis of a one-dimensional hierarchical Li1.2Mn0.54Co0.13Ni0.13O2 microrod cathode material for lithium-ion batteries. ChemElectroChem 4, 332 (2017)

    Article  CAS  Google Scholar 

  26. J.W. Zhang, X. Guo, S.M. Yao, W.T. Zhu, X.P. Qiu, Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation method. J. Power Sources 23, 245 (2013)

    Article  Google Scholar 

  27. D.M. Dai, B. Wang, B. Li, F. Li, X.B. Wang, H.W. Tang, Z.R. Chang, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro-nanostructure as a cathode material for high-performance Li-ion batteries. RSC Adv. 6, 96714 (2016)

    Article  CAS  Google Scholar 

  28. L.J. Zhang, B.R. Wu, N. Li, D.B. Mu, C.Z. Zhang, F. Wu, Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. J. Power Sources 240, 644 (2013)

    Article  CAS  Google Scholar 

  29. J.M. Zheng, P.H. Xu, M. Gu, J. Xiao, N.D. Browning, P.F. Yan, C.M. Wang, J.G. Zhang, Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381 (2015)

    Article  CAS  Google Scholar 

  30. J.L. Cheng, X.H. Li, Z.J. He, Z.X. Wang, H.J. Guo, Significant improved electrochemical performance of layered Li1.2Mn0.54Co0.13Ni0.13O2 via graphene surface modification. Mater. Technol. 31, 658 (2016)

    Article  CAS  Google Scholar 

  31. S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 216, 179 (2012)

    Article  CAS  Google Scholar 

  32. L.S. Lobo, A.R. Kumar, Synthesis, structural and electrical properties of Li1.2Mn0.54Co0.13Ni0.13O2 synthesised by solgel method. Mater. Res. Innov. 21, 249 (2017)

    Article  CAS  Google Scholar 

  33. S. Kong, Y.N. Gong, P. Liu, Y.Q. Xiao, F. Qi, X.Z. Zhao, Synthesis of lithium rich layered oxides with controllable structures through a MnO2 template strategy as advanced cathode materials for lithium ion batteries. Ceram. Int. 45, 13011 (2019)

    Article  CAS  Google Scholar 

  34. Y. Li, K.Y. Liu, M.Y. Lu, L. Wei, J.J. Zhong, Synthesis, characterization and electrochemical performance of AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 as cathode for Li-ion battery. Trans. Nonferrous Met. Soc. China 24, 3534 (2014)

    Article  CAS  Google Scholar 

  35. X.J. Liu, X. Liu, Y. Bi, J. Ke, Construction of lithium-rich manganese-based cathodes based on activated manganese dioxide for enhanced energy storage performances. Energy Fuels 36, 13238 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51602266), Sichuan Province Key R&D Project (2021YFG0216), Chengdu Technology Innovation R&D Project (2022-YF05-00320-SN) and Fundamental Research Funds for the Central Universities (SRTP2023061).

Funding

This work was funded by Sichuan Province Key R&D Project, 2021YFG0216, Jiang Qi.

Author information

Authors and Affiliations

Authors

Contributions

Hu Lei: methodology, formal analysis, and writing—original draft; Song Xi: methodology and writing—review and editing; Lan Jiayi: data curation, investigation; Xue Wentao: data curation, investigation; Yang Chengsong: data curation, investigation; Qiu Jiaxin: writing—review and editing; Jiang Qi: conceptualization, resources, writing—review and editing.

Corresponding author

Correspondence to Jiang Qi.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Xi, S., Jiayi, L. et al. Construction of rod-like micro/nano structure and its effects on the electrochemical energy storage performance of lithium-rich manganese-based cathode material. J Mater Sci: Mater Electron 35, 973 (2024). https://doi.org/10.1007/s10854-024-12732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12732-z

Navigation