Skip to main content
Log in

The facile preparation and performances of prelithiated silicon oxide anode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon oxide (SiOx) anode materials have gained significant attention in lithium-ion batteries due to their high theoretical specific capacity (above 1965 mAh g−1), relatively stable cycling performance, and lower production costs. However, SiOx anode materials tend to form a solid electrolyte interphase (SEI) film and generate inert substances like Li2O and Li4SiO4 during the initial charge and discharge processes, leading to the consumption of active lithium ions and low initial coulombic efficiency. To address these issues effectively, prelithiation of SiOx anode materials is explored in this study. A lithium powder suspension is prepared by dispersing lithium powder and carbon nanotubes (CNTs) in the electrolyte, served as the prelithiation agent. The SiO/G@C@A anode material is then prelithiated with this agent. The lithium powder suspension prelithiation agent enables effective prelithiation of the anode material. The SiO@C@A-1 anode exhibits improved electrochemical performances. At a current density of 0.1 A g−1, the initial specific capacity reaches 981.3 mAh g−1 with an initial coulombic efficiency of 95.65%, which is approximately 25% higher than that of the untreated sample. After 100 cycles and at a current density of 0.5 A g−1, the prelithiated sample retains a discharge specific capacity of 648 mAh g−1, with a capacity retention rate of 83.27%, around 10% higher than that of the untreated sample, demonstrating excellent cycling performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request.

References

  1. X. Cai, W. Liu, S. Yang et al., Dual-confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage. Adv. Mater. Interfaces 6(10), 1801800 (2019)

    Article  Google Scholar 

  2. Q. Chen, L. Tan, S. Wang et al., A facile synthesis of phosphorus doped Si/SiO2/C with high coulombic efficiency and good stability as an anode material for lithium ion batteries. Electrochim. Acta 385, 138385 (2021)

    Article  CAS  Google Scholar 

  3. Y. Feng, L. Liu, X. Liu et al., Enabling the ability of Li storage at high rate as anodes by utilizing natural rice husks-based hierarchically porous SiO2/N-doped carbon composites. Electrochim. Acta 359, 136933 (2020)

    Article  CAS  Google Scholar 

  4. G. Zhu, S. Yang, Y. Wang et al., Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries. RSC Adv. 9(1), 435–443 (2018)

    Article  PubMed  Google Scholar 

  5. L. Guo, H. He, Y. Ren et al., Core–shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries. Chem. Eng. J. 335, 32–40 (2018)

    Article  CAS  Google Scholar 

  6. H. He, D. Huang, Y. Tang et al., Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 57, 728–736 (2019)

    Article  CAS  Google Scholar 

  7. J. Tu, Y. Yuan, P. Zhan et al., Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. J. Phys. Chem. C 118(14), 7357–7362 (2014)

    Article  CAS  Google Scholar 

  8. Y. Liu, Z. Tong, K. Che et al., Facile fabrication of porous hexagonal flaky Co@C core–shell composites with excellent microwave-absorbing properties. J. Alloys Compd. 874, 159815 (2021)

    Article  CAS  Google Scholar 

  9. H.J. Kim, S. Choi, S.J. Lee et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16(1), 282–288 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Z. Cao, P. Xu, H. Zhai et al., Ambient-air stable lithiated anode for rechargeable li-ion batteries with high energy density. Nano Lett. 16(11), 7235–7240 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. X. Cao, X. Chuan, R.C. Massé et al., A three layer design with mesoporous silica encapsulated by a carbon core and shell for high energy lithium ion battery anodes. J. Mater. Chem. A 3(45), 22739–22749 (2015)

    Article  CAS  Google Scholar 

  12. F. Holtstiege, P. Bärmann, R. Nölle et al., Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries 4(1), 4 (2018)

    Article  Google Scholar 

  13. F. Holtstiege, A. Wilken, M. Winter et al., Running out of lithium A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Phys. Chem. Chem. Phys. 19(38), 25905–25918 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. C. Hou, H. Xie, Y. Qu et al., Rigid-flexible double coating silicon oxide composed of pitch pyrolytic carbon and polyvinyl alcohol/polyethyleneimine/carbon nanotubes as high-performance anode material for lithium-ion battery. Adv. Compos. Hybrid Mater. 6(4), 143 (2023)

    Article  CAS  Google Scholar 

  15. S. Xu, Z. Li, K. Chu et al., Construction of NiS nanosheets anchored on the inner surface of nitrogen-doped hollow carbon matrixes with enhanced sodium and potassium storage performances. ACS Appl. Energy Mater. 4(1), 662–670 (2021)

    Article  CAS  Google Scholar 

  16. J. Hou, C.-P. Hou, X.-W. Wang et al., Cyclic utilisation of waste tires as nanostructured anode materials for Li-ion batteries. Mater. Technol. 35(9–10), 612–617 (2020)

    Article  CAS  Google Scholar 

  17. J. Hwang, K. Kim, W.-S. Jung et al., Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes. J. Power Sources 436, 226883 (2019)

    Article  CAS  Google Scholar 

  18. J. Jang, I. Kang, J. Choi et al., Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes. Angew. Chem. Int. Ed. Engl. 59(34), 14473–14480 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Jiao, Y. Zheng, M. Jaroniec et al., Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136(11), 4394–4403 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. Jin, J. Dan, Y. Zou et al., Carbon-coated nitrogen doped SiOx anode material for high stability lithium ion batteries. Ceram. Int. 47(20), 29443–29450 (2021)

    Article  CAS  Google Scholar 

  21. G. Li, J.-Y. Li, F.-S. Yue et al., Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy 60, 485–492 (2019)

    Article  CAS  Google Scholar 

  22. Y. Li, Z. Long, P. Xu et al., A 3D pore-nest structured silicon–carbon composite as an anode material for high performance lithium-ion batteries. Inorg. Chem. Front. 4(12), 1996–2004 (2017)

    Article  CAS  Google Scholar 

  23. X. Liao, M. Peng, K. Liang, Enhanced electrochemical performance of SiO anode material via nitrogen-doped carbon coating in a facile and green route. J. Electroanal. Chem. 841, 79–85 (2019)

    Article  CAS  Google Scholar 

  24. Y. Liu, J. Yang, N. Imanishi et al., Composite anode containing nano-SiO1.1 and Li26Co0.4N with solid PEO electrolytes for lithium-ion batteries. J. Power Sources 146(1–2), 376–379 (2005)

    Article  CAS  Google Scholar 

  25. H. Xie, C. Hou, Y. Qu et al., N-SiO/graphite/rGO-CNTs@C composite with dense structure for high performance lithium-ion battery anode. J. Energy Storage 72, 108452 (2023)

    Article  Google Scholar 

  26. H. Xie, C. Hou, Z. Yue et al., Facile synthesis of C, N, P co-doped SiO as anode material for lithium-ion batteries with excellent rate performance. J. Energy Storage 64, 107147 (2023)

    Article  Google Scholar 

  27. Y. Qi, G. Wang, S. Li et al., Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries. Chem. Eng. J. 397, 125380 (2020)

    Article  CAS  Google Scholar 

  28. L. Shi, W. Wang, A. Wang et al., Scalable synthesis of core–shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power Sources 318, 184–191 (2016)

    Article  CAS  Google Scholar 

  29. Z. Song, K. Feng, H. Zhang et al., “Giving comes before receiving”: high performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor. Nano Energy 66, 104175 (2019)

    Article  CAS  Google Scholar 

  30. Z. Li, Y. Yang, G. Ding et al., Optimizing the nitrogen configuration in interlayer-expanded carbon materials via sulfur-bridged bonds toward remarkable energy storage performances. J. Mater. Chem. A 10(18), 10033–10042 (2022)

    Article  CAS  Google Scholar 

  31. J.W. Wang, Y. He, F. Fan et al., Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13(2), 709–715 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Xing, L. Zhang, S. Mao et al., Core–shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Mater. Res. Bull. 108, 170–175 (2018)

    Article  CAS  Google Scholar 

  33. W. Zhang, J. Li, P. Guan et al., One-pot sol-gel synthesis of Si/C yolk-shell anodes for high performance lithium-ion batteries. J. Alloys Compd. 835, 155135 (2020)

    Article  CAS  Google Scholar 

  34. J. Zhao, J. Sun, A. Pei et al., A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Mater. 10, 275–281 (2018)

    Article  Google Scholar 

  35. Y. Xu, X. Sun, Z. Li et al., Boosting the K(+)-adsorption capacity in edge-nitrogen doped hierarchically porous carbon spheres for ultrastable potassium ion battery anodes. Nanoscale 13(46), 19634–19641 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. W. Zheng, P. Zhang, J. Chen et al., In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J. Mater. Chem. A 6(8), 3543–3551 (2018)

    Article  CAS  Google Scholar 

  37. G. Ding, Z. Li, L. Wei et al., Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochim. Acta 424, 140645 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (22269001), Yinchuan R&D innovation team of advanced energy storage materials and devices (2022CXTD05).

Author information

Authors and Affiliations

Authors

Contributions

Chunping Hou: Reviewing and edition. Zeyu Yue, Hehang Sun, Lidong Zhai: Conception and designed the work, Writing—original draft and editing. Haidong Xi, Hui Tian: Methodology, Data curation. Yuqing Qul, Xinwei Wang: Formal analysis, Investigation. Jiao Hou: Software.

Corresponding author

Correspondence to Chunping Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Yue, Z., Sun, H. et al. The facile preparation and performances of prelithiated silicon oxide anode materials. J Mater Sci: Mater Electron 35, 956 (2024). https://doi.org/10.1007/s10854-024-12708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12708-z

Navigation