Skip to main content
Log in

One-step synthesis of Li2Mg2Mo3O12-(Li1/2Bi1/2)MoO4 composite ceramics with a stable temperature coefficient for ULTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric materials with near-zero τf values are needed to enhance the thermal stability of devices and ensure their stability during temperatures changes. In this study, the introduction of the (Li1/2Bi1/2)MoO4 phase was employed to regulate the τf of the Li2Mg2Mo3O12 system. A temperature-stable Li2Mg2Mo3O12-(Li1/2Bi1/2)MoO4 composite ceramics were successfully synthesized using a one-step direct synthesis approach for the first time. The synthesis involved controlling the Li2CO3 : MgO : Bi2O3 : MoO3 ratios at 1 : (2 − 1.5x) : x/2 : 3 (x = 0.02 – 0.30). The impacts of different x values on phase composition, sintering properties and microwave dielectric properties were investigated. X-ray diffraction and Roman spectroscopy revealed the coexistence of the two phases without other miscellaneous phases. When x = 0.15, the excellent microwave dielectric properties were obtained with samples sintered at 600 °C for 2 h: εr = 11.4, Q×f = 41,592 GHz (f = 11.2 GHz), τf = − 8 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors are unable or have chosen not to specify which data has been used.

References

  1. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    CAS  Google Scholar 

  2. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Google Scholar 

  3. H. Yu, J. Liu, W. Zhang et al., Ultra-low sintering temperature ceramics for LTCC applications: a review. J. Mater. Sci.: Mater. Electron. 26(12), 9414–9423 (2015)

    CAS  Google Scholar 

  4. D. Zhou, W.-B. Li, L.-X. Pang et al., Sintering behavior and dielectric properties of ultra-low temperature fired silver molybdate ceramics. J. Am. Ceram. Soc. 97(11), 3597–3601 (2014)

    CAS  Google Scholar 

  5. M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. Sci. 20(3), 151–170 (2016)

    CAS  Google Scholar 

  6. J. Ren, K. Bi, X. Fu et al., Novel Bi2O3-added Al2Mo3O12 composite microwave dielectric ceramics for ULTCC applications. J. Alloys Compd. 823, 153867 (2020)

    CAS  Google Scholar 

  7. X. Yuan, G. Zhang, H. Wang, A novel solid solution (K1-xNax)2Mo2O7 (0.0 ≤ x ≤ 0.3) ceramics with ultra-low sintering temperatures. J. Eur. Ceram. Soc. 38(15), 4967–4971 (2018)

    CAS  Google Scholar 

  8. K. Wang, T. Yin, H. Zhou et al., Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. J. Eur. Ceram. Soc. 40(2), 381–385 (2020)

    CAS  Google Scholar 

  9. R. Muhammad, Y. Iqbal, C.R. Rambo et al., Research trends in microwave dielectrics and factors affecting their properties: a review. Int. J. Mater. Res. 105(5), 431–439 (2014)

    CAS  Google Scholar 

  10. R.K. Bhuyan, T.S. Kumar, D. Pamu, Liquid phase effect of Bi2O3 additive on densification, microstructure and microwave dielectric properties of Mg2TiO4 ceramics. Ferroelectrics. 516(1), 173–184 (2017)

    CAS  Google Scholar 

  11. W. Liu, R. Zuo, A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Eur. Ceram. Soc. 38(1), 339–342 (2018)

    Google Scholar 

  12. G. Zhang, H. Wang, J. Guo et al., Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system. J. Am. Ceram. Soc. 98(2), 528–533 (2015)

    CAS  Google Scholar 

  13. G. Zhang, J. Guo, X. Yuan et al., Ultra-low temperature sintering and microwave dielectric properties of a novel temperature stable Na2Mo2O7-Na0.5Bi0.5MoO4 ceramic. J. Eur. Ceram. Soc. 38(2), 813–816 (2018)

    CAS  Google Scholar 

  14. L.-X. Pang, D. Zhou, D.-W. Wang et al., Temperature stable K0.5(Nd1 – xBix)0.5MoO4 microwave dielectrics ceramics with ultra-low sintering temperature. J. Am. Ceram. Soc. 101(5), 1806–1810 (2018)

    CAS  Google Scholar 

  15. G. Zhang, J. Guo, L. He et al., Preparation and microwave dielectric properties of ultra-low temperature sintering ceramics in K2O-MoO3 binary system. J. Am. Ceram. Soc. 97(1), 241–245 (2014)

    CAS  Google Scholar 

  16. G. Zhang, J. Guo, H. Wang, Ultra-low temperature sintering microwave dielectric ceramics based on Ag2O-MoO3 binary system. J. Am. Ceram. Soc. 100(6), 2604–2611 (2017)

    CAS  Google Scholar 

  17. D. Zhou, C.A. Randall, A. Baker et al., Dielectric properties of an ultra-low-temperature cofiring Bi2Mo2O9 multilayer. J. Am. Ceram. Soc. 93(5), 1443–1446 (2010)

    CAS  Google Scholar 

  18. D. Zhou, H. Wang, L.-X. Pang et al., Bi2O3 -MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric. J. Am. Ceram. Soc. 92(10), 2242–2246 (2009)

    CAS  Google Scholar 

  19. D. Zhou, C.A. Randall, L.-X. Pang et al., Microwave dielectric properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M = zn, ca, Al, and in) lyonsite-related-type ceramics with ultra-low sintering temperatures. J. Am. Ceram. Soc. 94(3), 802–805 (2011)

    CAS  Google Scholar 

  20. J. Dhanya, A.V. Basiluddeen, R. Ratheesh, Synthesis of ultra low temperature sinterable Na2Zn5(MoO4)6 ceramics and the effect of microstructure on microwave dielectric properties. Scripta Mater. 132, 1–4 (2017)

    CAS  Google Scholar 

  21. D. Zhou, C.A. Randall, L.-X. Pang et al., Microwave dielectric properties of (ABi)1/2MoO4 (A = Li, na, K, Rb, Ag) type ceramics with ultra-low firing temperatures. Mater. Chem. Phys. 129(3), 688–692 (2011)

    CAS  Google Scholar 

  22. D. Zhou, C.A. Randall, H. Wang et al., Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures. J. Am. Ceram. Soc. 93(4), 1096–1100 (2010)

    CAS  Google Scholar 

  23. Q. Liao, Y. Wang, F. Jiang et al., Ultra-low fire glass‐free Li3FeMo3O12 microwave dielectric ceramics. J. Am. Ceram. Soc. 97(8), 2394–2396 (2014)

    CAS  Google Scholar 

  24. L.-X. Pang, D. Zhou, J. Guo et al., Microwave dielectric properties of (Li0.5Ln0.5)MoO4 (ln = nd, er, Gd, Y, Yb, Sm, and ce) ceramics. J. Am. Ceram. Soc. 98(1), 130–135 (2015)

    CAS  Google Scholar 

  25. C.-S. Chou, C.-H. Yang, P.-Y. Lee et al., Preparation and characterization of ultra-low-temperature of (BiAg)0.5MoO4 dielectric ceramic doped with Y2O3. Mater. Chem. Phys. 242, 122569 (2020)

    CAS  Google Scholar 

  26. W. Bian, G. Zhou, Y. Dong et al., Structural analysis and microwave dielectric properties of a novel Li2Mg2Mo3O12 ceramic with ultra-low sintering temperature. Ceram. Int. 47(5), 7081–7087 (2021)

    CAS  Google Scholar 

  27. F. Li, Y. Li, Y. Li et al., Enhanced Na+-substituted Li2Mg2Mo3O12 ceramic substrate based on ultra-low temperature co-fired ceramic technology for microwave and terahertz polarization-selective functions. J. Eur. Ceram. Soc. 43(2), 384–391 (2023)

    CAS  Google Scholar 

  28. Y. Tang, J. Jiang, J. Wang et al., Microwave dielectric properties of Li2Mg2[WxMo(1–x)O4]3 (0 ≤ x ≤ 1) ceramics sintered at low temperatures. J. Electron. Mater. 50(12), 6766–6771 (2021)

    CAS  Google Scholar 

  29. J. Zhang, R. Zuo, J. Song et al., Low-loss and low-temperature firable Li2Mg3SnO6-Ba3(VO4)2 microwave dielectric ceramics for LTCC applications. Ceram. Int. 44(2), 2606–2610 (2018)

    CAS  Google Scholar 

  30. D. Wang, L. Ding, B. Heng et al., Temperature-stable crystal structure and microwave dielectric properties of BaSi2O5-Ba3V2O8 composite ceramics. J. Alloys Compd. 927, 167096 (2022)

    CAS  Google Scholar 

  31. C.-L. Huang, J.-J. Wang, C.-Y. Huang, Microwave dielectric properties of sintered alumina using nano-scaled powders of α alumina and TiO2. J. Am. Ceram. Soc. 90(5), 1487–1493 (2007)

    CAS  Google Scholar 

  32. J. Iqbal, H. Liu, H. Hao et al., Phase, microstructure, and microwave dielectric properties of a new ceramic system: (1 – x)mg(Ti0.95Sn0.05)O3–xCaTiO3. Ceram. Int. 43(16), 14156–14160 (2017)

    CAS  Google Scholar 

  33. K. Wang, H. Zhou, X. Luan et al., NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency. Ceram. Int. 47(1), 121–129 (2021)

    Google Scholar 

  34. T. Zhou, Y. Liu, K. Song et al., New low-εr, temperature stable Mg3B2O6‐Ba3(VO4)2 microwave composite ceramic for 5G application. J. Am. Ceram. Soc. 104(8), 3818–3822 (2021)

    CAS  Google Scholar 

  35. J. Zhang, Z. Fu, T. Chen et al., Microwave dielectric properties of a new ZnTiNb2O8-(Li0.5Bi0.5)MoO4 ceramic sintered at low temperature. J. Mater. Sci.: Mater. Electron. 33(30), 23283–23292 (2022)

    CAS  Google Scholar 

  36. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8(4), 402–410 (1960)

    Google Scholar 

  37. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Theory Tech. 18(8), 476–485 (1970)

    Google Scholar 

  38. H. Gu, C. Feng, H. Zhu et al., Effect of Li nonstoichiometry and TiO2 addition on the microwave dielectric properties of Li3PO4 ceramics. Ceram. Int. 48(14), 20332–20340 (2022)

    CAS  Google Scholar 

  39. R. Baddour-Hadjean, J.-P. Pereira-Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 110(3), 1278–1319 (2010)

    CAS  PubMed  Google Scholar 

  40. H.-H. Xi, D. Zhou, H.-D. Xie et al., Raman spectra, infrared spectra, and microwave dielectric properties of low-temperature firing [(Li0.5Ln0.5)1–xCax]MoO4 (ln = sm and nd) solid solution ceramics with Scheelite structure. J. Am. Ceram. Soc. 98(2), 587–593 (2015)

    CAS  Google Scholar 

  41. P. Loiko, E.V. Vilejshikova, A.A. Volokitina et al., Growth, structure, Raman Spectra and luminescence of orthorombic Li2Mg2(MoO4)3 crystals doped with Eu3+ and Ce3+ ions. J. Lumin. 188, 154–161 (2017)

    CAS  Google Scholar 

  42. G. Zhou, D. Wang, H. Zhu et al., Effect of Zn0·17Nb0·33Ti0·5O2 on the microwave dielectric properties of ZnTiNb2O8 ceramics. Ceram. Int. 48(5), 6998–7004 (2022)

    CAS  Google Scholar 

  43. H.-J. Lee, I.-T. Kim, K.S.H. Kug Sun Hong, Dielectric properties of AB2O6 compounds at microwave frequencies (A = ca, mg, Mn, Co, Ni, Zn, and B = nb, Ta). Jpn. J. Appl. Phys. 36(10A), L1318 (1997)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Lifeng Ding and Qitu Zhang conceived and designed the study. Lifeng Ding, Ben Heng, Xia Feng and Wenjie Bian performed the work. Haikui Zhu and Lixi Wang provided testing and analysis. Lifeng Ding wrote the paper. Lifeng Ding, Haikui Zhu and Yi Hou reviewed and modify the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Haikui Zhu or Qitu Zhang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Heng, B., Feng, X. et al. One-step synthesis of Li2Mg2Mo3O12-(Li1/2Bi1/2)MoO4 composite ceramics with a stable temperature coefficient for ULTCC applications. J Mater Sci: Mater Electron 35, 908 (2024). https://doi.org/10.1007/s10854-024-12647-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12647-9

Navigation