Skip to main content
Log in

Fabrication of symmetric solid-state Ni(OH)2/MWCNT/ACG supercapacitor and more investigation of surface morphology on its capacitive behavior

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Many studies have been done to control the electrochemical performance of electrodes for use in supercapacitors. Depending on the morphology, size, and structure of the material used in electrode design, the fabricated electrode exhibits supercapacitor or battery-like behavior. In this work, we report the easy electrochemical synthesis of Ni(OH)2/MWCNT onto Anodize Commercial Graphite (ACG) sheet electrode and the effect deposition time of Ni(OH)2 on the supercapacitor behavior of the electrode. Ni(OH)2/MWCNT/ACG sheet electrode was easily fabricated through electrochemical anodization of commercial graphite sheet followed by electrodeposition of MWCNT and Ni(OH)2 at different times. The effect of deposition time of Ni(OH)2 as well as the effect of anodization of commercial graphite sheet on supercapacitive behavior of the constructed electrode was investigated and proved by surface morphology (FE-SEM), CV, GCD, and EIS electrochemical tests at 1.0 M NaOH solution. Also, XRD and EDX analyses confirmed that MWCNT and Ni(OH)2 were deposited on the electrode. To investigate the operational use of the fabricated electrode, a symmetric solid-state supercapacitor device was constructed with the optimized electrode, and its electrochemical performance was investigated. The results showed that the optimized supercapacitor device has a good capacitance of 115 mF cm−2 at 1 mA cm−2 and cyclic life of 72.18% after 8000 GCD cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Banerjee, B. De, P. Sinha, et al., Applications of supercapacitors. in Handbook of Nanocomposite Supercapacitor Materials I. (Springer, New York, 2020), pp. 341–350

  2. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  Google Scholar 

  3. K. Kim, J. Park, J. Lee, et al., Ultrafast PEDOT: PSS/H2SO4 electrical double layer capacitors: comparison with pani pseudocapacitors. ChemSusChem (2022)

  4. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power. Sources 157, 11–27 (2006)

    Article  CAS  Google Scholar 

  5. E. Frackowiak, Electrode materials with pseudocapacitive properties. Supercapacitors Mater. Syst. Appl. 207–237 (2013)

  6. D. Sarkar, G.G. Khan, A.K. Singh, K. Mandal, High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays. J. Phys. Chem. C 117, 15523–15531 (2013)

    Article  CAS  Google Scholar 

  7. S. Kumar, G. Saeed, L. Zhu et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  8. S. Natarajan, M. Ulaganathan, V. Aravindan, Building next-generation supercapacitors with battery type Ni (OH)2. J. Mater. Chem. A 9, 15542–15585 (2021)

    Article  CAS  Google Scholar 

  9. Y. Luo, Y. Li, D. Wang et al., Hierarchical α-Ni (OH)2 grown on CNTs as a promising supercapacitor electrode. J. Alloys Compd. 743, 1–10 (2018)

    Article  CAS  Google Scholar 

  10. S. Asaithambi, P. Rajkumar, A.S. Rasappan et al., Designed nanoarchitectonics and fabrication of Ni (OH)2/MWCNT/CNF electrode for asymmetric hybrid supercapacitor applications. J Energy Storage 72, 108532 (2023)

    Article  Google Scholar 

  11. J. Yu, B. Wang, Q. Lu et al., Cathode glow discharge electrolysis synthesis of flower-like β-Ni (OH)2 microsphere for high-performance supercapacitor. Chem. Eng. J. 453, 139769 (2023)

    Article  CAS  Google Scholar 

  12. S. Min, C. Zhao, Z. Zhang et al., Synthesis of Ni (OH)2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J. Mater. Chem. A 3, 3641–3650 (2015)

    Article  CAS  Google Scholar 

  13. B.K. Kim, V. Chabot, A. Yu, Carbon nanomaterials supported Ni (OH)2/NiO hybrid flower structure for supercapacitor. Electrochim. Acta 109, 370–380 (2013)

    Article  CAS  Google Scholar 

  14. F. Gobal, M. Faraji, Fabrication of nanoporous nickel oxide by de-zincification of Zn–Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors. Electrochim. Acta 100, 133–139 (2013)

    Article  CAS  Google Scholar 

  15. D. Mandal, P. Routh, A.K. Mahato, A.K. Nandi, Electrochemically modified graphite paper as an advanced electrode substrate for supercapacitor application. J. Mater. Chem. A 7, 17547–17560 (2019)

    Article  CAS  Google Scholar 

  16. R. Dadashi, M. Bahram, M. Faraji, Fabrication of a solid-state symmetrical supercapacitor based on polyaniline grafted multiwalled carbon nanotube deposit onto created vertically oriented graphene nanosheets on graphite sheet. J. Energy Storage 52, 104775 (2022)

    Article  Google Scholar 

  17. L. Fagiolari, M. Sampò, A. Lamberti et al., Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Mater. 51, 400–434 (2022)

    Article  Google Scholar 

  18. Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25, 5336–5342 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. P. Balaya, Size effects and nanostructured materials for energy applications. Energy Environ. Sci. 1, 645–654 (2008)

    Article  CAS  Google Scholar 

  20. J. Duay, S.A. Sherrill, Z. Gui et al., Self-limiting electrodeposition of hierarchical MnO2 and M (OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7, 1200–1214 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. M.S. Javed, A. Mateen, I. Hussain et al., Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Mater. 53, 827–872 (2022)

    Article  Google Scholar 

  22. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. H. Liu, X. Liu, S. Wang et al., Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Storage Mater. 28, 122–145 (2020)

    Article  Google Scholar 

  24. C. Liu, F. Li, L. Ma, H. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. J. Liu, J. Wang, C. Xu et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018)

    Article  Google Scholar 

  26. S.K. Meher, P. Justin, G.R. Rao, Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3, 683–692 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J. Alloys Compd. 734, 89–111 (2018)

    Article  CAS  Google Scholar 

  28. B. Babakhani, D.G. Ivey, Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes. J. Power. Sources 196, 10762–10774 (2011)

    Article  CAS  Google Scholar 

  29. H. Gong, S.-T. Kim, J.D. Lee, S. Yim, Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl. Surf. Sci. 266, 219–224 (2013)

    Article  CAS  Google Scholar 

  30. G.R. Fu, Z.A. Hu, L. Xie et al., Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci. 4, 1052 (2009)

    Article  CAS  Google Scholar 

  31. S. Parveen, S.K. Sharma, S.N. Pandey, Solid-state symmetric supercapacitor based on Y doped Sr (OH)2 using SILAR method. Energy 197, 117163 (2020)

    Article  Google Scholar 

  32. W. Mahfoz, S.S. Shah, M.A. Aziz, A.-R. Al-Betar, Fabrication of high-performance supercapacitor using date leaves-derived submicron/nanocarbon. J. Saudi Chem. Soc. 26, 101570 (2022)

    Article  CAS  Google Scholar 

  33. M.A. Yewale, R.A. Kadam, N.K. Kaushik et al., Interconnected plate-like NiCo2O4 microstructures for supercapacitor application. Mater. Sci. Eng. B 287, 116072 (2023)

    Article  CAS  Google Scholar 

  34. N. Liu, Z. Peng, Y. Tian et al., Cobalt pentlandite structured (Fe Co, Ni) 9S8: fundamental insight and evaluation of hybrid supercapacitor. Appl. Surf. Sci. 611, 155568 (2023)

    Article  CAS  Google Scholar 

  35. B.I. Rosario-Castro, E.J. Contés, M. Lebrón-Colón et al., Combined electron microscopy and spectroscopy characterization of as-received, acid purified, and oxidized HiPCO single-wall carbon nanotubes. Mater. Charact. 60, 1442–1453 (2009)

    Article  CAS  Google Scholar 

  36. B. Jansi Rani, N. Dhivya, G. Ravi et al., Electrochemical performance of β-Nis@ Ni(OH)2 nanocomposite for water splitting applications. ACS Omega 4, 10302–10310 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. X. Ni, Q. Zhao, B. Li et al., Interconnected β-Ni(OH)2 sheets and their morphologay-retained transformation into mesostructured Ni. Solid State Commun. 137, 585–588 (2006)

    Article  CAS  Google Scholar 

  38. G.J. de Soler-Illia, M. Jobbágy, A.E. Regazzoni, M.A. Blesa, Synthesis of nickel hydroxide by homogeneous alkalinization. Precipitation mechanism. Chem. Mater. 11, 3140–3146 (1999)

    Article  Google Scholar 

  39. P. Nie, C. Min, H.-J. Song et al., Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol. Lett. 58, 1–12 (2015)

    Article  CAS  Google Scholar 

  40. J. Tientong, S. Garcia, C.R. Thurber,T.D. Golden, Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction. J. Nanotechnol. (2014)

  41. L. Wang, X. Li, T. Guo et al., Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int. J. Hydrog. Energy 39, 7876–7884 (2014)

    Article  CAS  Google Scholar 

  42. S. Sun, P. Diao, C. Feng et al., Nickel-foam-supported β-Ni (OH)2 as a green anodic catalyst for energy efficient electrooxidative degradation of azo-dye wastewater. RSC Adv. 8, 19776–19785 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D.A. Corrigan, R.M. Bendert, Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1M KOH. J. Electrochem. Soc. 136, 723 (1989)

    Article  CAS  Google Scholar 

  44. P.J. Hall, M. Mirzaeian, S.I. Fletcher et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)

    Article  CAS  Google Scholar 

  45. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  46. K.J. Aoki, J. Chen, Y. Liu, B. Jia, Peak potential shift of fast cyclic voltammograms owing to capacitance of redox reactions. J. Electroanal. Chem. 856, 113609 (2020)

    Article  CAS  Google Scholar 

  47. A.T.A. Ahmed, H.S. Chavan, Y. Jo et al., One-step facile route to copper cobalt sulfide electrodes for supercapacitors with high-rate long-cycle life performance. J. Alloys Compd. 724, 744–751 (2017)

    Article  CAS  Google Scholar 

  48. A.C. Lokhande, A. Patil, A. Shelke et al., Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors. Electrochim. Acta 284, 80–88 (2018)

    Article  CAS  Google Scholar 

  49. M. Sun, J. Tie, G. Cheng et al., In situ growth of burl-like nickel cobalt sulfide on carbon fibers as high-performance supercapacitors. J. Mater. Chem. A 3, 1730–1736 (2015)

    Article  CAS  Google Scholar 

  50. K.M. Thulasi, S.T. Manikkoth, A. Paravannoor et al., Supercapacitor electrodes based on modified titania nanotube arrays on flexible substrates. Int. J. Mater. Res. 112, 937–944 (2021)

    CAS  Google Scholar 

  51. R. Dadashi, M. Bahram, M. Faraji, Polyaniline-tungsten oxide nanocomposite co-electrodeposited onto anodized graphene oxide nanosheets/graphite electrode for high performance supercapacitor device. J. Appl. Electrochem. 53(5), 893–908 (2023)

    Article  CAS  Google Scholar 

  52. R. Dadashi, M. Bahram, K. Farhadi, In-situ growth of Cu nanoparticles-polybenzidine over GO sheets onto graphite sheet as a novel electrode material for fabrication of supercapacitor device. J Energy Storage 79, 110038 (2024)

    Article  Google Scholar 

  53. P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 443, 149–154 (1998)

    Article  CAS  Google Scholar 

  54. T.C. Girija, M.V. Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J. Power. Sources 156, 705–711 (2006)

    Article  CAS  Google Scholar 

  55. S.-K. Hwang, S.J. Patil, N.R. Chodankar et al., An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem. Eng. J. 427, 131854 (2022)

    Article  CAS  Google Scholar 

  56. Y.A. Tarek, R. Shakil, A.H. Reaz et al., Wrinkled Flower-Like rGO intercalated with Ni(OH)2 and MnO2 as high-performing supercapacitor electrode. ACS Omega 7, 20145–20154 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. V.M. Poonam, D.K. Jangid et al., Investigation of supercapacitor cyclic degradation through impedance spectroscopy and Randles circuit model. Energy Storage 4, e355 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to the office of the vice chancellor of research of Urmia University—Iran for the financial support.

Funding

This work was supported by the Research Affairs of Urmia University.

Author information

Authors and Affiliations

Authors

Contributions

RD; methodology, investigation, data curation, writing. MB; investigation, writing—review and editing, Supervisor. MF; investigation, writing—review and editing, Supervisor. All the authors were involved in the preparation of the final manuscript.

Corresponding author

Correspondence to Morteza Bahram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashi, R., Bahram, M. & Faraji, M. Fabrication of symmetric solid-state Ni(OH)2/MWCNT/ACG supercapacitor and more investigation of surface morphology on its capacitive behavior. J Mater Sci: Mater Electron 35, 852 (2024). https://doi.org/10.1007/s10854-024-12593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12593-6

Navigation