Skip to main content
Log in

A comprehensive comparative investigation of thick layer and microcrystalline CsPbBr3 perovskite material: optical and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lately, researchers have been investigating perovskite materials as they have attracted an enormous amount of attention due to their interesting properties. In this paper we are emphasizing the preparation method to obtain microcrystals or thick layers of CsPbBr3 perovskite materials. Prepared samples, on an ITO substrate, are characterized optically by the means of the stationary photoluminescence (PL) and the Time-Resolved photoluminescence (TRPL). Electrically, they are characterized by the meaning of IV technique. The PL spectra of the microcrystal’s samples (denoted S1) show the presence of two peaks. The peak associated with the highest energy level allowed the determination of the bandgap energy (Eg), yielding a value of 2.37 eV. On the other hand, the thick layer samples (denoted S2) revealed a single sharp peak with a band gap energy E= 2.33 eV. The TRPL of S1 has shown a carriers’ lifetime τ = 37.2 ns. However, the S2 manifested a faster decay with a carriers’ lifetime τ = 0.88 ns. By studying the I–V responses, we have revealed that the Schottky contacts are sensitive to light, and they show a normal hysteresis (NH) and inverted one (IH) depending on the type of the sample. In both sample types, the manifestation of a self-heating phenomenon has been observed. Notably, this observation represents a novel contribution to the existing literature, as, to the best of the authors’ knowledge, such a phenomenon has not been previously reported in the study of CsPbBr3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available from the corresponding author, Hafedh BRAHIM, upon reasonable request.

References

  1. J. Lim, M.T. Hörantner, N. Sakai et al., Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy Environ. Sci. 12, 169–176 (2019). https://doi.org/10.1039/c8ee03395a

    Article  CAS  Google Scholar 

  2. E.J. Chukwuemeka, N.A. Osita, A.O. Odira et al., Performance and Stability evaluation of low-cost inorganic methyl ammonium lead iodide (CH3NH3PbI3) Perovskite Solar cells enhanced with natural dyes from Cashew and Mango leaves. Adv. J. Chem. Sect. A 7, 27–40 (2024). https://doi.org/10.48309/ajca.2024.406961.1384

    Article  CAS  Google Scholar 

  3. M. Noman, M. Shahzaib, S.T. Jan et al., Optimizing band gap, electron affinity, & carrier mobility for improved performance of formamidinium lead tri-iodide perovskite solar cells. Mater. Sci. Eng. B 300, 117114 (2024). https://doi.org/10.1016/j.mseb.2023.117114

    Article  CAS  Google Scholar 

  4. Q. Tai, K. Tang, F. Yan, Environ. Sci. (2019). https://doi.org/10.1039/c9ee01479a

    Article  Google Scholar 

  5. M.M. Lee, J. Teuscher, T. Miyasaka et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  PubMed  Google Scholar 

  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  7. F. Zhang, Y. Gao, D. Wang et al., Phase distribution management for high-efficiency and bright blue perovskite light-emitting diodes. Nano Energy. 120, 109144 (2024). https://doi.org/10.1016/J.NANOEN.2023.109144

    Article  CAS  Google Scholar 

  8. G.H. Lee, K. Kim, Y. Kim et al., Recent advances in patterning strategies for full-color perovskite light-emitting diodes (Springer, Berlin, 2024)

    Book  Google Scholar 

  9. H.L. Park, T.W. Lee, Organic and perovskite memristors for neuromorphic computing. Org. Electron. 98, 106301 (2021). https://doi.org/10.1016/j.orgel.2021.106301

    Article  CAS  Google Scholar 

  10. K. Abiedh, B. Dhanabalan, S. Kutkan et al., Surface-dependent properties and tunable photodetection of CsPbBr3 microcrystals grown on functional substrates. Adv. Opt. Mater. (2022). https://doi.org/10.1002/adom.202101807

    Article  Google Scholar 

  11. W. Lv, L. Li, M. Xu et al., Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 31, 1–28 (2019). https://doi.org/10.1002/adma.201900682

    Article  CAS  Google Scholar 

  12. H. Mai, X. Li, J. Lu et al., Synthesis of layered lead-free perovskite nanocrystals with precise size and shape control and their photocatalytic activity. J. Am. Chem. Soc. 145, 17337–17350 (2023). https://doi.org/10.1021/jacs.3c04890

    Article  CAS  PubMed  Google Scholar 

  13. A.A. Pradhan, M.C. Uible, S. Agarwal et al., Synthesis of BaZrS3 and BaHfS3 chalcogenide perovskite films using single-phase molecular precursors at moderate temperatures. Angew. Chem. Int. Ed. 62, 1–7 (2023). https://doi.org/10.1002/anie.202301049

    Article  CAS  Google Scholar 

  14. X. Yang, T. Xu, Y. Zhu et al., Preparation of CsPbBr3@PS composite microspheres with high stability by electrospraying. J. Mater. Chem. C Mater. 6, 7971–7975 (2018). https://doi.org/10.1039/c8tc01408f

    Article  CAS  Google Scholar 

  15. C.C. Stoumpos, C.D. Malliakas, J.A. Peters et al., Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013). https://doi.org/10.1021/cg400645t

    Article  CAS  Google Scholar 

  16. G.A. Nemnes, C. Besleaga, V. Stancu et al., Normal and inverted hysteresis in perovskite solar cells. J. Phys. Chem. C 121, 11207–11214 (2017). https://doi.org/10.1021/acs.jpcc.7b04248

    Article  CAS  Google Scholar 

  17. Y. Jiang, Y. Feng, X. Sun et al., Identifying inverted-hysteresis behavior of CH3NH3PbI3-xClx planar hybrid perovskite solar cells based on external bias precondition. J. Phys. D Appl. Phys. (2019). https://doi.org/10.1088/1361-6463/ab28d0

    Article  Google Scholar 

  18. H.-S. Kim, N.-G. Park, Correction to parameters affecting I – V hysteresis of CH 3 NH 3 PbI 3 Perovskite Solar cells: effects of Perovskite Crystal size and Mesoporous TiO 2 Layer. J. Phys. Chem. Lett. 5, 3434–3434 (2014). https://doi.org/10.1021/jz502009r

    Article  CAS  PubMed  Google Scholar 

  19. J.M. Frost, K.T. Butler, A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. (2014). https://doi.org/10.1063/1.4890246

    Article  Google Scholar 

  20. W. Tress, N. Marinova, T. Moehl et al., Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015). https://doi.org/10.1039/c4ee03664f

    Article  CAS  Google Scholar 

  21. V.W. Bergmann, S.A.L. Weber, F. Javier Ramos et al., Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. (2014). https://doi.org/10.1038/ncomms6001

    Article  PubMed  Google Scholar 

  22. F. Gabelloni, F. Biccari, N. Falsini et al., Long-living nonlinear behavior in CsPbBr 3 carrier recombination dynamics. Nanophotonics. 8, 1447–1455 (2019). https://doi.org/10.1515/nanoph-2019-0013

    Article  CAS  Google Scholar 

  23. M. Zhang, Z. Zheng, Q. Fu et al., Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals. CrystEngComm. 19, 6797–6803 (2017). https://doi.org/10.1039/c7ce01709j

    Article  CAS  Google Scholar 

  24. M. Chen, Y. Yuan, Y. Liu et al., High-quality all-inorganic CsPbBr3 single crystals prepared by a facile one-step solution growth method. RSC Adv. 12, 14838–14843 (2022). https://doi.org/10.1039/d2ra01900k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P. Sujith, M. Pratheek, S.R. Parne, P. Predeep, Growth and characterization of high-quality orthorhombic phase CsPbBr3 perovskite single crystals for optoelectronic applications. J. Electron. Mater. 52, 718–729 (2023). https://doi.org/10.1007/s11664-022-10042-w

    Article  CAS  Google Scholar 

  26. M. Zhang, Z. Zheng, Q. Fu et al., Synthesis and single crystal growth of perovskite semiconductor CsPbBr3. J. Cryst. Growth. 484, 37–42 (2018). https://doi.org/10.1016/j.jcrysgro.2017.12.020

    Article  CAS  Google Scholar 

  27. H. Shi, X. Zhang, X. Sun et al., Direct and indirect recombination and thermal kinetics of excitons in colloidal all-inorganic lead halide perovskite nanocrystals. J. Phys. Chem. C 123, 19844–19850 (2019). https://doi.org/10.1021/acs.jpcc.9b04532

    Article  CAS  Google Scholar 

  28. B. Zhang, F. Bin, Wang, H. Zhang et al., Defect proliferation in CsPbBr3 crystal induced by ion migration. Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5134108

    Article  PubMed  Google Scholar 

  29. W. Tress, J.P. Correa Baena, M. Saliba et al., Inverted current–voltage hysteresis in mixed perovskite solar cells: polarization, energy barriers, and defect recombination. Adv. Energy Mater. 6, 1–11 (2016). https://doi.org/10.1002/aenm.201600396

    Article  CAS  Google Scholar 

  30. G. Tumen-Ulzii, T. Matsushima, D. Klotz et al., Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun. Mater. 1, 1–7 (2020). https://doi.org/10.1038/s43246-020-0028-z

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HB contributed to investigation, data curation, materials processing and characterization, and writing and original draft preparation. IC contributed to data Curation. FH contributed to methodology, supervision, project administration, and writing, reviewing, & editing. RM contributed to resources

Corresponding author

Correspondence to H. Brahim.

Ethics declarations

Competing interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing in this manuscript.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, H., Chiba, I., Hassen, F. et al. A comprehensive comparative investigation of thick layer and microcrystalline CsPbBr3 perovskite material: optical and electrical properties. J Mater Sci: Mater Electron 35, 753 (2024). https://doi.org/10.1007/s10854-024-12553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12553-0

Navigation