Skip to main content
Log in

2D MXene incorporated nickel hydroxide composite for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current investigation, we report the successful synthesis of a novel Ni(OH)2/Ti3C2Tx MXene nanocomposite via a microwave-assisted technique, specifically tailored for supercapacitor applications. The inherent semiconductor properties of nickel hydroxide often impede its electrochemical capabilities; however, the integration with a conductive host material can significantly ameliorate this limitation. To this end, Titanium Carbide (Ti3C2Tx) was incorporated during the Nickel Hydroxide (Ni(OH)2) synthesis process, resulting in the in-situ formation of Ni(OH)2 nanosheets homogeneously anchored onto the MXene sheets. The electrode derived from this nanocomposite showcased exceptional electrochemical attributes. Notably, it achieved a remarkable-specific capacitance peak of 675 Fg−1 at a current density of 2 Ag−1, coupled with outstanding stability and cyclability metrics. Furthermore, the asymmetric supercapacitor engineered with the synthesized material attained an energy density of 9.25 Whkg−1 and a power density of 3.2 kWkg−1. This device not only demonstrated superior rate capability but also sustained cyclic stability. The empirical evidence gathered from these experiments underscores the promising potential of metal hydroxide/MXene nanocomposites in advancing supercapacitor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. S. Arunachalam, B. Kirubasankar, V. Murugadoss, D. Vellasamy, S. Angaiah, Facile synthesis of electrostatically anchored nd(OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New. J. Chem. 42, 2923–2932 (2018). https://doi.org/10.1039/C7NJ04335J

    Article  CAS  Google Scholar 

  2. W. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, Z. Guo, Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta. 296, 907–915 (2019). https://doi.org/10.1016/j.electacta.2018.11.074

    Article  CAS  Google Scholar 

  3. Z.A. Sheikh, D. Vikraman, H. Kim, S. Aftab, S.F. Shaikh, F. Shahzad, J. Jung, H.-S. Kim, S. Hussain, D.-K. Kim, Perovskite oxide-based nanoparticles embedded MXene composites for supercapacitors and oxygen evolution reactions. J. Energy Storage. 81, 110342 (2024). https://doi.org/10.1016/j.est.2023.110342

    Article  Google Scholar 

  4. B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019). https://doi.org/10.1016/j.cej.2018.08.185

    Article  CAS  Google Scholar 

  5. G. Li, L. Wang, X. Lei, Z. Peng, T. Wan, S. Maganti, M. Huang, V. Murugadoss, I. Seok, Q. Jiang, D. Cui, A. Alhadhrami, M.M. Ibrahim, H. Wei, Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv. Compos. Hybrid. Mater. 5, 853–863 (2022). https://doi.org/10.1007/s42114-022-00501-7

    Article  CAS  Google Scholar 

  6. M. Ubaidullah, J. Ahmed, T. Ahamad, S.F. Shaikh, S.M. Alshehri, A.M. Al-Enizi, Hydrothermal synthesis of novel nickel oxide@nitrogenous mesoporous carbon nanocomposite using costless smoked cigarette filter for high performance supercapacitor. Mater. Lett. 266, 127492 (2020). https://doi.org/10.1016/j.matlet.2020.127492

    Article  CAS  Google Scholar 

  7. A. Udayakumar, P. Dhandapani, S. Ramasamy, S. Angaiah, Layered double hydroxide (LDH) – MXene nanocomposite for Electrocatalytic Water Splitting: current status and perspective. ES Energy Environ. (2023). https://doi.org/10.30919/esee902

    Article  Google Scholar 

  8. Y. Wang, Y. Liu, C. Wang, H. Liu, J. Zhang, J. Lin, J. Fan, T. Ding, J.E. Ryu, Z. Guo, Significantly enhanced ultrathin NiCo-based MOF Nanosheet Electrodes Hybrid with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng. Sci. (2020). https://doi.org/10.30919/es8d903

    Article  Google Scholar 

  9. A.V. Thakur, H.M. Pathan, B.J. Lokhande, Structural and electrochemical study of hybrid flexible electrodes containing in-situ growth of RuO2 within PPy matrix controlled by RuCl3% consumed during SILAR synthesis for preparation of symmetric device. ES Energy Environ. (2022). https://doi.org/10.30919/esee8c751

    Article  Google Scholar 

  10. B. Tawiah, R.K. Seidu, B.K. Asinyo, B. Fei, A review of fiber-based supercapacitors and sensors for energy-autonomous systems. J. Power Sources. 595, 234069 (2024). https://doi.org/10.1016/j.jpowsour.2024.234069

    Article  CAS  Google Scholar 

  11. F. Yuan, C. Li, J. Wu, Y. Liang, H. Huang, S. Xu, X. Liang, W. Zhou, J. Guo, Binder-free hybrid cobalt-based sulfide/oxide nanoarrays toward enhanced energy storage performance for hybrid supercapacitors. J. Energy Storage. 63, 106979 (2023). https://doi.org/10.1016/j.est.2023.106979

    Article  Google Scholar 

  12. P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for Electrochemical supercapacitors: overview, Electrochem. Energ. Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

    Article  CAS  Google Scholar 

  13. V.S. Kadam, C.V. Jagtap, P.E. Lokhande, R.N. Bulakhe, S.-W. Kang, A.A. Yadav, H.M. Pathan, One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. J. Mater. Sci: Mater. Electron. 34, 1083 (2023). https://doi.org/10.1007/s10854-023-10433-7

    Article  CAS  Google Scholar 

  14. X. Yi, H. Sun, N. Robertson, C. Kirk, Nanoflower Ni(OH)2 grown in situ on ni foam for high-performance supercapacitor electrode materials. Sustainable Energy Fuels. 5, 5236–5246 (2021). https://doi.org/10.1039/D1SE01036K

    Article  CAS  Google Scholar 

  15. W. Li, Y. Chen, F. Li, W. Zheng, J. Yin, X. Chen, L. Chen, Preparation of amorphous detrital ni (OH)2-reduced graphene oxide composite as electrode material for supercapacitor. Ionics. 25, 2401–2409 (2019). https://doi.org/10.1007/s11581-018-2677-1

    Article  CAS  Google Scholar 

  16. C. Jagtap, V. Kadam, B. Kamble, P.E. Lokhande, A. Pakdel, D. Kumar, R. Udayabhaskar, A. Vedpathak, N.B. Chaure, H.M. Pathan, Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. J. Energy Storage. 83, 110666 (2024). https://doi.org/10.1016/j.est.2024.110666

    Article  Google Scholar 

  17. P.E. Lokhande, S. Kulkarni, S. Chakrabarti, H.M. Pathan, M. Sindhu, D. Kumar, J. Singh, A. Kumar, Y. Kumar Mishra, D.-C. Toncu, M. Syväjärvi, A. Sharma, A. Tiwari, The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 473, 214771 (2022). https://doi.org/10.1016/j.ccr.2022.214771

    Article  CAS  Google Scholar 

  18. T. Huang, B. Gao, S. Zhao, H. Zhang, X. Li, X. Luo, M. Cao, C. Zhang, S. Luo, Y. Yue, Y. Ma, Y. Gao, All-MXenes zinc ion hybrid micro-supercapacitor with wide voltage window based on V2CTx cathode and Ti3C2Tx anode. Nano Energy. 111, 108383 (2023). https://doi.org/10.1016/j.nanoen.2023.108383

    Article  CAS  Google Scholar 

  19. P.K. Ray, R. Mohanty, K. Parida, Recent advancements of NiCo LDH and graphene based nanohybrids for supercapacitor application. J. Energy Storage. 72, 108335 (2023). https://doi.org/10.1016/j.est.2023.108335

    Article  Google Scholar 

  20. P.E. Lokhande, U. Chavan, Cyclic voltammetry behavior modeling of fabricated nanostructured Ni(OH)2 electrode using artificial neural network for supercapacitor application. Proc. Inst. Mech. Eng. Part C: J Mech. Eng. Sci. 234, 2563–2568 (2020). https://doi.org/10.1177/0954406220907615

    Article  CAS  Google Scholar 

  21. P.E. Lokhande, U.S. Chavan, S. Bhosale, A. Kalam, S. Deokar, New-Generation Materials for Flexible Supercapacitors, in Flexible Supercapacitor Nanoarchitectonics, 1st edn., ed. by M.I. Inamuddin, R. Ahamed, T. Boddula, Altalhi (Wiley, NY, 2021), pp.277–313. https://doi.org/10.1002/9781119711469.ch11

    Chapter  Google Scholar 

  22. P.E. Lokhande, U.S. Chavan, Conventional chemical precipitation route to anchoring Ni(OH)2 for improving flame retardancy of PVA. Mater. Today: Proc. 5, 16532–16357 (2018). https://doi.org/10.1016/j.matpr.2018.05.131

    Article  CAS  Google Scholar 

  23. H.W. Park, K.C. Roh, Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. J. Power Sources. 557, 232558 (2023). https://doi.org/10.1016/j.jpowsour.2022.232558

    Article  CAS  Google Scholar 

  24. P. Wang, B. Zheng, L. Han, J. Xie, W. Duan, Y. Yue, Y. Zhang, A flexible superhydrophobic supercapacitor with enhanced metal Ion Coordination by Electrochemical Optimization. Energy Fuels. (2024). https://doi.org/10.1021/acs.energyfuels.3c03735. acs.energyfuels.3c03735

    Article  PubMed  PubMed Central  Google Scholar 

  25. U.S. Chavan, P.E. Lokhande, S. Bhosale, Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications. Mater. Technol. (2021). https://doi.org/10.1080/10667857.2021.1873636

    Article  Google Scholar 

  26. P.E. Lokhande, U.S. Chavan, Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater. Lett. 218, 225–228 (2018). https://doi.org/10.1016/j.matlet.2018.02.012

    Article  CAS  Google Scholar 

  27. B. Kurt Urhan, H. Öztürk Doğan, E. Çepni, M. Eryiğit, Ü. Demir, T. Öznülüer, Özer, Ni(OH)2-electrochemically reduced graphene oxide nanocomposites as anode electrocatalyst for direct ethanol fuel cell in alkaline media. Chem. Phys. Lett. 763, 138208 (2021). https://doi.org/10.1016/j.cplett.2020.138208

    Article  CAS  Google Scholar 

  28. B. Hou, X. Jin, L. Jiang, Y. Li, C. Qiu, D. Han, Y. Ding, L. Sheng, Flexible porous Graphene/Nickel hydroxide composite films with 3D ion transport channels for high volumetric performance asymmetric supercapacitor. Appl. Surf. Sci. 569, 151036 (2021). https://doi.org/10.1016/j.apsusc.2021.151036

    Article  CAS  Google Scholar 

  29. X. Wu, F. Zeng, X. Song, X. Sha, H. Zhou, X. Zhang, Z. Liu, M. Yu, C. Jiang, In-situ growth of Ni(OH)2 nanoplates on highly oxidized graphene for all-solid-state flexible supercapacitors. Chem. Eng. J. 456, 140947 (2023). https://doi.org/10.1016/j.cej.2022.140947

    Article  CAS  Google Scholar 

  30. S. Asaithambi, P. Rajkumar, A.S. Rasappan, G. Ravi, D. Velauthapillai, K. Yoo, J. Kim, Designed nanoarchitectonics and fabrication of Ni(OH)2/MWCNT/CNF electrode for asymmetric hybrid supercapacitor applications. J. Energy Storage. 72, 108532 (2023). https://doi.org/10.1016/j.est.2023.108532

    Article  Google Scholar 

  31. P.E. Lokhande, A. Pakdel, H.M. Pathan, D. Kumar, D.-V.N. Vo, A. Al-Gheethi, A. Sharma, S. Goel, P.P. Singh, B.-K. Lee, Prospects of MXenes in energy storage applications. Chemosphere. 297, 134225 (2022). https://doi.org/10.1016/j.chemosphere.2022.134225

    Article  CAS  PubMed  Google Scholar 

  32. S.K. Sharma, A. Kumar, G. Sharma, D.-V.N. Vo, A. García-Peñas, O. Moradi, M. Sillanpää, MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: a review. Chemosphere. 291, 132923 (2022). https://doi.org/10.1016/j.chemosphere.2021.132923

    Article  CAS  PubMed  Google Scholar 

  33. A.M. Aravind, M. Tomy, A. Kuttapan, A.M. Kakkassery Aippunny, X.T. Suryabai, Progress of 2D MXene as an Electrode Architecture for Advanced supercapacitors: a Comprehensive Review. ACS Omega. 8, 44375–44394 (2023). https://doi.org/10.1021/acsomega.3c02002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Wang, Y. Wang, Recent progress in MXene layers materials for supercapacitors: high-performance electrodes. SmartMat. 4, e1130 (2023). https://doi.org/10.1002/smm2.1130

    Article  CAS  Google Scholar 

  35. R.S. Karmur, D. Gogoi, M.R. Das, N.N. Ghosh, High-performance flexible supercapacitor device composed of a hierarchical 2-D MXene-Ni(OH) 2 nanocomposite and Biomass-Derived Porous Carbon electrodes. Energy Fuels. 36, 8488–8499 (2022). https://doi.org/10.1021/acs.energyfuels.2c01699

    Article  CAS  Google Scholar 

  36. J. Wang, Y. Hong, Y. Pan, J. Zhu, X. Xu, W.M. Choi, J. Yang, Ni-foam supported Ni(OH)2 sheets decorated by MXene quantum dots for high performance supercapacitors. Mater. Chem. Phys. 312, 128634 (2024). https://doi.org/10.1016/j.matchemphys.2023.128634

    Article  CAS  Google Scholar 

  37. Y. Cui, K. Yang, F. Zhang, Y. Lyu, Q. Zhang, B. Zhang, Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion. Compos. Part A: Appl. Sci. Manufac. 158, 106986 (2022). https://doi.org/10.1016/j.compositesa.2022.106986

    Article  CAS  Google Scholar 

  38. M.Z. Iqbal, M.M. Faisal, S.R. Ali, M. Alzaid, A facile approach to investigate the charge storage mechanism of MOF/PANI based supercapattery devices. Solid State Ionics. 354, 115411 (2020). https://doi.org/10.1016/j.ssi.2020.115411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to Researchers Supporting Project number (RSP2024R348), King Saud University, Riyadh, Saudi Arabia. Author PEL thanks ANID for the postdoctoral fellowship (FONDECYT#3230388).

Funding

Resources: King Saud University, Riyadh, Saudi Arabia, Project# RSP2024R348. Fondo Nacional de Desarrollo Científico y Tecnológico, (FONDECYT), Project#3230388.

Author information

Authors and Affiliations

Authors

Contributions

PEL : Data curation, editing draft, methodology, conceptualization, CVJ : Investigation, Writing—original draft, VSK : Data curation, formal analysis, UR : Formal analysis, DK : Formal analysis, editing draft, BAAA : Funding acquisition, formal analysis, YAK : Formal analysis, data curation.

Corresponding authors

Correspondence to P. E. Lokhande or R. Udayabhaskar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, P.E., Jagtap, C., Kadam, V. et al. 2D MXene incorporated nickel hydroxide composite for supercapacitor application. J Mater Sci: Mater Electron 35, 697 (2024). https://doi.org/10.1007/s10854-024-12447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12447-1

Navigation