Skip to main content
Log in

Effects of aging time and temperature on shear properties of Sn–Zn and Sn–Ag–Cu solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–Zn system and Sn–Ag–Cu system solders are considered promising lead-free solders. The reliability of the joints is a key factor in evaluating the performance of the solder. The microstructure evolution of the joints under aging treatment can affect the joint properties. The temperature of shear testing also affects the fracture mechanism, thereby determining the joint reliability. This study investigated the microstructure evolution and fracture mechanism of Sn–9Zn–2.5Bi–1.5In (Sn–Zn) and Sn–3Ag–0.5Cu (SAC) pastes joints with Cu-substrate under various conditions of different aging times and shear test temperatures. It is concluded that the IMC in SAC joints are scalloped Cu6Sn5 and planar Cu3Sn, and grow along with aging duration. The IMC in Sn–Zn joints are specific Cu5Zn8 layers with a slow growth rate as aging time increases. Many Zn phases react with Cu, forming Cu5Zn8 products in the aged solder matrix. The aged Sn–Zn joints tend to fracture at the solder/IMC interface. Both increasing aging time and high operating temperature of shear test lead to an increase in the tendency of transgranular fracture and brittle fracture for the two types of joints in the solder, and therefore, joint reliability is reduced. Furthermore, as the shear test temperature increases, the plasticity of the solder material increases as well, and the interface connection strength decreases. In summary, Sn–Zn joints have better reliability performance than SAC joints under the effects of increasing aging time and high operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on request from the authors. The data that support the findings of this study are available from the corresponding author G. Zhang, upon reasonable request.

References

  1. X. Hu, W. Chen, X. Yu et al., Shear strengths and fracture behaviors of Cu/Sn37Pb/Cu soldered joints subjected to different displacement rates. J. Alloy Compd. 600, 13–20 (2014). https://doi.org/10.1016/j.jallcom.2014.02.039

    Article  CAS  Google Scholar 

  2. L. Yin, J. Xian, Z. Yao, Comparison of wettability for Sn-based solders on copper and aluminum substrates. Mater. Sci. Forum 687, 15–20 (2011). https://doi.org/10.4028/www.scientific.net/MSF.687.15

    Article  CAS  Google Scholar 

  3. C.M.L. Wu, D.Q. Yu, C.M.T. Law et al., Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng. R. 44, 1–44 (2004). https://doi.org/10.1016/j.mser.2004.01.001

    Article  CAS  Google Scholar 

  4. K. Suganuma, Advances in lead-free electronics soldering. Curr. Opin. Solid. State Mater. 5, 55–64 (2001). https://doi.org/10.1016/S1359-0286(00)00036-X

    Article  CAS  Google Scholar 

  5. S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017). https://doi.org/10.1016/j.microrel.2017.06.016

    Article  CAS  Google Scholar 

  6. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54, 1253–1273 (2014). https://doi.org/10.1016/j.microrel.2014.02.025

    Article  CAS  Google Scholar 

  7. M. Yang, H. Ji, S. Wang, Y.H. Ko et al., Effects of Ag content on the interfacial reactions between liquid Sn-Ag-Cu solders and Cu substrates during soldering. J. Alloy Compd. 679, 18–25 (2016). https://doi.org/10.1016/j.jallcom.2016.03.177

    Article  CAS  Google Scholar 

  8. S. Ahat, M. Sheng, L. Luo, Effects of static thermal aging and thermal cycling on the microstructure and shear strength of Sn95.5Ag3.8Cu0.7 solder joints. J. Mater. Res. 16, 2914–2921 (2001). https://doi.org/10.1557/JMR.2001.0400

    Article  CAS  Google Scholar 

  9. W.R. Osório, L.C. Peixoto, L.R. Garcia et al., Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. J. Alloy Compd. 572, 97–106 (2013). https://doi.org/10.1016/j.jallcom.2013.03.234

    Article  CAS  Google Scholar 

  10. Q.L. Yang, J.K. Shang, Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect. J. Electron. Mater. 34, 1363–1367 (2005). https://doi.org/10.1007/s11664-005-0191-5

    Article  CAS  Google Scholar 

  11. J. Liu, G. Zhang, Z. Wang et al., Thermal property, wettability and interfacial characterization of novel Sn–Zn–Bi–In alloys as low-temperature lead-free solders. Mater. Des. 84, 331–339 (2015). https://doi.org/10.1016/j.matdes.2015.06.148

    Article  CAS  Google Scholar 

  12. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R. 27, 95–141 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  13. B.J. Lee, N.M. Wang, H.M. Lee, Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation. Acta Mater. 45, 1867–1874 (1997). https://doi.org/10.1016/S1359-6454(96)00325-4

    Article  CAS  Google Scholar 

  14. J.W. Yoon, B.I. Noh, B.K. Kim et al., Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. J. Alloy Compd. 486, 142–147 (2009). https://doi.org/10.1016/j.jallcom.2009.06.159

    Article  CAS  Google Scholar 

  15. X. Ma, F.J. Wang, Y.Q. Yi et al., Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface. Mater. Lett. 57, 3361–3365 (2003). https://doi.org/10.1016/S0167-577X(03)00075-2

    Article  CAS  Google Scholar 

  16. K.S. Kim, S.H. Huh, K. Suganuma, Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloy Compd. 352, 226–236 (2003). https://doi.org/10.1016/S0925-8388(02)01166-0

    Article  CAS  Google Scholar 

  17. C. Kanchanomai, Y. Miyashita, Y. Mutoh, Low cycle fatigue behavior and mechanisms of a eutectic Sn–Pb solder 63Sn/37Pb. Int. J. Fatigue 24, 671–683 (2002). https://doi.org/10.1016/S0142-1123(01)00186-4

    Article  CAS  Google Scholar 

  18. Y.S. Kim, K.S. Kim, C.W. Hwang et al., Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys. J. Alloy Compd. 352, 237 (2003). https://doi.org/10.1016/S0925-8388(02)01168-4

    Article  CAS  Google Scholar 

  19. S. Liu, S. Xue, P. Xue et al., Present status of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. 26, 4389–4411 (2015). https://doi.org/10.1007/s10854-014-2659-7

    Article  CAS  Google Scholar 

  20. Y. Wang, S. Li, X. Hu et al., Shear strength and fracture surface analysis of Sn58Bi/Cu solder joints under a wide range of strain rates. Microelectron. Reliab. 86, 27–37 (2018). https://doi.org/10.1016/j.microrel.2018.05.007

    Article  CAS  Google Scholar 

  21. S. Gong, G. Chen, S. Qu et al., Shear strength and fracture analysis of Sn-9Zn-2.5Bi-1.5In and Sn-3.0Ag-0.5Cu pastes with Cu-substrate joints under different reflow times. Microelectron. Reliab. 127, 114378 (2021). https://doi.org/10.1016/j.microrel.2021.114378

    Article  CAS  Google Scholar 

  22. C.Y. Lee, J.W. Yoon, Y.J. Kim et al., Interfacial reactions and joint reliability of Sn–9Zn solder on Cu or electrolytic Au/Ni/Cu BGA substrate. Microelectron. Eng. 82, 561–568 (2005). https://doi.org/10.1016/j.mee.2005.07.056

    Article  CAS  Google Scholar 

  23. P. Xue, S. Xue, Y. Shen et al., Interfacial microstructures and mechanical properties of Sn–9Zn–0.5Ga–xNd on Cu substrate with aging treatment. Mater. Des. 60, 1–6 (2014). https://doi.org/10.1016/j.matdes.2014.03.052

    Article  CAS  Google Scholar 

  24. K.S. Kim, K.W. Ryu, C.H. Yu et al., The formation and growth of intermetallic compounds and shear strength at Sn-Zn solder/Au-Ni-Cu interfaces. Microelectron. Reliab. 45, 647–655 (2005). https://doi.org/10.1016/j.microrel.2004.07.005

    Article  CAS  Google Scholar 

  25. L. Zhang, L. Sun, Y. Guo et al., Reliability of lead-free solder joints in CSP device under thermal cycling. J. Mater. Sci. 25, 1209–1213 (2014). https://doi.org/10.1007/s10854-014-1711-y

    Article  CAS  Google Scholar 

  26. M.N. Islam, Y.C. Chan, M.J. Rizvi, W. Jillek, Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder. J. Alloy Compd. 400, 136–144 (2005). https://doi.org/10.1016/j.jallcom.2005.03.053

    Article  CAS  Google Scholar 

  27. G. Liu, S. Ji, Effect of Bi on the microstructure and mechanical properties of Sn-Zn alloys processed by rolling. Mater. Charact. 137, 39–49 (2018). https://doi.org/10.1016/j.matchar.2018.01.017

    Article  CAS  Google Scholar 

  28. S.E.A. Negm, A.S.A. Moghny, S.I. Ahmad, Investigation of thermal and mechanical properties of Sn-Zn and Sn-Zn-Bi near-eutectic solder alloys. Result. Mater. 15, 100316 (2022). https://doi.org/10.1016/j.rinma.2022.100316

    Article  CAS  Google Scholar 

  29. S.P. Yu, C.L. Liao, M.H. Hon et al., The effects of flux on the wetting characteristics of near-eutectic Sn-Zn-In solder on Cu substrate. J. Mater. Sci. 35, 4217–4224 (2000). https://doi.org/10.1023/A:1004867329163

    Article  CAS  Google Scholar 

  30. T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. Rep. 49, 1–60 (2005). https://doi.org/10.1016/j.mser.2005.03.001

    Article  CAS  Google Scholar 

  31. H.T. Lee, S.Y. Hu, T.F. Hong, Y.F. Chen, The shear strength and fracture behavior of Sn-Ag-xSb solder joints with Au/Ni-P/Cu UBM. J. Electron. Mater. 37, 867–873 (2008). https://doi.org/10.1007/s11664-008-0396-5

    Article  CAS  Google Scholar 

  32. H.W. Chiang, K. Chang, J.Y. Chen, The effect of Ag content on the formation of Ag3Sn plates in Sn-Ag-Cu lead-free solder. J. Electron. Mater. 35, 2074–2080 (2006). https://doi.org/10.1007/s11664-006-0316-5

    Article  CAS  Google Scholar 

  33. K.D. Min, K.H. Jung, C.J. Lee et al., Enhancement of electrochemical and thermal bonding reliability by forming a Cu3Sn intermetallic compound using Cu and Sn–58Bi. J. Alloy Compd. 857, 157595 (2021). https://doi.org/10.1016/j.jallcom.2020.157595

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by commission project of Beijing Lianjin High Technology Company Limited (Grant No. 20162001467).

Funding

This work was supported by commission project of Beijing Lianjin High Technology Company Limited (Grant No. 20162001467).

Author information

Authors and Affiliations

Authors

Contributions

Shiliang Gong: Conceptualization, Data curation, Formal analysis, Methodology, Software, Writing—Original Draft, Investigation. Gaoqiang Chen: Writing—Review & Editing. Songtao Qu: Writing—Review & Editing. Xun Xu: Data Curation, Writing—Review & Editing. Vichea Duk: Writing—Review & Editing. Qingyu Shi: Supervision. Gong Zhang: Resources, Validation, Supervision, Project administration.

Corresponding author

Correspondence to Gong Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Chen, G., Qu, S. et al. Effects of aging time and temperature on shear properties of Sn–Zn and Sn–Ag–Cu solder joints. J Mater Sci: Mater Electron 35, 750 (2024). https://doi.org/10.1007/s10854-024-12440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12440-8

Navigation