Skip to main content
Log in

Improvement in thermoelectric properties of Bi-Mg co-doped SnTe via band engineering and nanostructuring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the effects of Bi-Mg co-doping on the thermoelectric properties of SnTe materials are investigated. Pristine SnTe and Sn0.96Bi0.02Mg0.02Te materials are synthesized using a facile solvothermal technique. Calculated crystallite size and grain size decrease after Bi-Mg co-doping. In Sn0.96Bi0.02Mg0.02Te various lattice defects, lattice strain, stacking fault and dislocation densities are higher as compared to pristine SnTe. Minimum lattice thermal conductivity is 0.21 W/mK in Sn0.96Bi0.02Mg0.02Te and 1.13 W/mK in pristine SnTe at 584 K. Lower lattice thermal conductivity in Bi-Mg co-doped SnTe may be due to more phonon scattering at interfaces and lattice defects. A decrease in carrier concentration following doping may lead to a decrease in electrical conductivity in Sn0.96Bi0.02Mg0.02Te as compared to SnTe. Maximum S in Sn0.96Bi0.02Mg0.02Te is 72 μV/K and in pure SnTe is 66 μV/K at 584 K. The increase in S may be due to band engineering via Bi-Mg co-doping as (i) Bi generates resonant energy states at the Fermi level of SnTe (ii) Mg doping modifies the band structure of SnTe via converging valence bands and widening the band gap. Maximum ‘figure of merit’ zT = 0.21 in Sn0.96Bi0.02Mg0.02Te is 91% higher than pristine SnTe at 584 K. Material quality factor (B = BET/κL) indicates that maximum zT > 1 can be achieved until S = 246 μV/K in Sn0.96Bi0.02Mg0.02Te. The electronic contribution of quality factor falls after doping which demonstrates that the increase in zT is caused by a decrease in lattice thermal conductivity. The thermoelectric efficiency and figure of merit ‘ZT’ of thermoelectric devices composed of Sn0.96Bi0.02Mg0.02Te are almost double those of pristine SnTe. Thus experimental findings reveal that Bi-Mg co-doped SnTe can be a potential thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

S:

Seebeck coefficient

σ:

Electrical conductivity:a,b,c:Lattice cell parameters

S 2 σ :

Power factor

ĸ :

Thermal conductivity

κ e :

Electronic thermal conductivity

κ e :

Lattice thermal conductivity

z :

Ioffe’s figure of merit

zT :

Figure of merit of a material

T :

Absolute temperature

ZT:

The figure of merit of thermoelectric device

kB :

Boltzmann constant

L:

Lorenz number

EF :

Fermi level

D:

Crystallite size

e:

Electronic charge

h:

Planck’s constant

υ:

Frequency

References

  1. A.F. Ioffe, Semiconductor thermoelements, and thermoelectric cooling (Infosearch, London, 1957)

    Google Scholar 

  2. F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley, Hoboken, 2007)

    Google Scholar 

  3. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergul, Z. Ikonic, M.S. Toprak, H.H. Radamson, Unprecedented thermoelectric power factor in SiGe nanowiresfield-effect transistors. ECS J. Solid State Sci. Technol. 6(9), Q114–Q119 (2017)

    Article  CAS  Google Scholar 

  4. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidiz, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. R. Moshwan, L. Yang, J. Zou, Z.-G. Chen, Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv. Func. Mater. 27(43), 1703278 (2017)

    Article  Google Scholar 

  6. R.F. Brebrick, A.J. Strauss, Anomalous thermoelectric power as evidence for two-valence bands in SnTe. Phys. Rev. 131(1), 104–110 (1963)

    Article  CAS  Google Scholar 

  7. A. Bugalia, V. Gupta, N. Thakur, Strategies to enhance performance of thermoelectric materials: a Review. J. Renew. Sustain. Energy 15, 032704 (2023)

    Article  CAS  Google Scholar 

  8. S. Acharya, J. Pandey, A. Soni, Soft Phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping. Appl. Phys. Lett. 109, 133904 (2016)

    Article  Google Scholar 

  9. Q. Long, J. Xin, S. Li, A. Basit, Tuning the thermoelectric performance of SnTe via dual-site electronic donation and super-saturation solution. ACS Appl. Energy Mater. 2, 7490–7496 (2019)

    Article  CAS  Google Scholar 

  10. Z. Zhou, J. Yang, Q. Jiang, Y. Luo, D. Zhang, Y. Ren, X. He, J. Xin, Multiple effect of Bi doping to enhanced thermoelectric properties of SnTe. J. Mater. Chem. A. 4, 13171–13175 (2016)

    Article  CAS  Google Scholar 

  11. A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 9, 2011–2019 (2016)

    Article  CAS  Google Scholar 

  12. Q. Zhang, B. Liao, Y. Lan, Z. Ren, High thermoelectric performance by resonant dopant Indium in nanostructured SnTe. Proc. Natl. Acad. Sci. 110(3), 13261–13266 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D.K. Bhat, U.S. Shenoy, Zn: A versatile resonant dopant for SnTe thermoelectrics. Mater. Today Phys. 11, 100158 (2019)

    Article  Google Scholar 

  14. T. Hussain, X. Li, M.H. Danish, M.U. Rehman, J. Zhang, D. Li, G. Chen, G. Tang, Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy 73, 104832 (2020)

    Article  CAS  Google Scholar 

  15. A. Banik, U.S. Shenoy, S. Anand, U. Waghmare, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 27(2), 581–587 (2015)

    Article  CAS  Google Scholar 

  16. G. Tan, F. Shi, J.W. Doak, H. Sun, L.-D. Zhao, P. Wang, C. Uher, C. Wolverten, V.P. Dravid, M.G. Kanatzidis, Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 8, 267 (2015)

    Article  CAS  Google Scholar 

  17. X.J. Tan, H.Z. Shao, J. He, G.Q. Liu, J.T. Xu, J. Jiang, H.C. Jiang, Band engineering and improved thermoelectric performance in M-doped SnTe (M=Mg, Mn, Cd and Hg). Phys. Chem. Chem. Phys. 18, 7141–7147 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. R.A.R.A. Qrabi, N. Mecholsky, J. Hwang, W. Kim, Band degeneracy, low thermal conductivity and high thermoelectric figure of merit in SnTe-CaTe alloys. Chem. Mater. 28(1), 376–384 (2015)

    Google Scholar 

  19. F. Guo, B. Cui, Y. Liu, X. Meng, Thermoelectric SnTe with band convergence, dense dislocations, and interstitials through Sn self-compensation and Mn alloying. Small 14(37), 1802615 (2018)

    Article  Google Scholar 

  20. Y. Pei, L. Zheng, W. Li, S. Lin, Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv. Electron. Mater. 2, 1600019 (2016)

    Article  Google Scholar 

  21. L. Wang, X. Tang, G. Liu, H. Shao, B. Yu, H. Jiang, S. Tue, J. Jiang, Manipulating band convergence and resonant state in thermoelectric material SnTe by Mn-In co-doping. ACS Energy Lett. 2, 1203–1207 (2017)

    Article  CAS  Google Scholar 

  22. D.K. Bhat, U.S. Shenoy, High thermoelectric properties of co-doped Tin Telluride due to synergistic effect of Magnesium and Indium. J. Phys. Chem. C 121(13), 7123–7130 (2017)

    Article  CAS  Google Scholar 

  23. D.K. Bhat, U.S. Shenoy, Enhanced thermoelectric performance of bulk tin telluride: Synergistic effect of calcium and indium co-doping. Mater. Today Phys. 4, 12–18 (2018)

    Article  Google Scholar 

  24. Q. Zhang, X. Tan, Z. Guo, H. Wang, C. Xiong, N. Man, F. Shi, H. Hu, G.-Q. Liu, J. Jiang, Improvement of thermoelectric properties of SnTe by Mn-Bi codoping. Chem. Eng. J. 42(2), 127795 (2021)

    Article  Google Scholar 

  25. D.K. Bhat, U.S. Shenoy, Electronic structure engineering of tin telluride through co-doping of bismuth and Indium for high performance thermoelectrics: a synergistic effect leading to record high room temperature ZT in tin telluride. J. Mater. Chem. C. 7, 4817–4821 (2019)

    Article  Google Scholar 

  26. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2012)

    Article  Google Scholar 

  27. M.G. Kanatzidis, Nanostructutred thermoelectrics: A new paradigm? Chem. Mater. 22, 648–659 (2009)

    Article  Google Scholar 

  28. L.D. Zhao, X. Zhang, H. Wu, G. Tan, Y. Pei, Y. Xiao, C. Chang, D. Wu, H. Chi, L. Zheng, S. Gong, C. Uher, J. He, M.G. Kanatzidis, Enhanced thermoelectric properties in the counter-doped snte system with strained endotaxial SrTe. J. Am. Chem. Soc. 138, 2366–2373 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. T. Gangjian, L. Zhao, F. Shi, J. Doak, S.-H. Lo, H. Sun, C. Wolverton, V. Dravid, C. Uher, M.G. Kanatzidis, High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 136, 7006–7017 (2014)

    Article  Google Scholar 

  30. X. Qi, Y. Huang, D. Wu, B. Jiang, B. Zhu, X. Xu, J. Feng, B. Jia, Z. Shu, J. He, Eutectoid nano-precipitations inducing remarkably enhanced ther moelectric performance in (Sn1-xCdxTe)1-y(Cu2Te)y. J. Mater. Chem. A. 8, 2798–2808 (2020)

    Article  CAS  Google Scholar 

  31. B. Mason, The determination of the density of solids. Geol. Foeren. Stockholm Foerh. 66, 27–51 (1944)

    Article  CAS  Google Scholar 

  32. S. Sk, A. Pandey, S.K. Pandey, Instrument for simultaneous measurement of Seebeck coefficient and thermal conductivity in the 300–800 K temperature range with python interfacing. Rev. Sci. Instrum. 93(4), 043902 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. S. Singh, S.K. Pandey, Fabrication of simple apparatus for resistivity measurement in high temperature range 300–620 K. IEEE Trans. Instrum. Meas.. 67, 2169 (2017)

    Article  Google Scholar 

  34. V. Anita, Gupta, improvement in structural properties of SnTe by Co doping for thermoelectric applications. Mater. Today: Proc. 46, 5857–5860 (2021)

    CAS  Google Scholar 

  35. K. Rani, V. Gupta, Ranjeet, surfactant assisted solvothermal synthesis of nanostructure for thermoelectric applications. Mater. Today Proc. 62, 6432–6437 (2022)

    Article  CAS  Google Scholar 

  36. K. Rani, V. Gupta, V. Ranjeet, A. Pandey, Improved thermoelectric performance of Se doped n-type nanostructured Bi2Te3. J. Mater. Sci.: Mater Electron. 34(13), 1074 (2023). https://doi.org/10.1007/s10854-023-10490-y

    Article  CAS  Google Scholar 

  37. V. Kavita, Gupta, Ranjeet, structural and morphological properties of nanostructured Bi2Te3 with Mn-doping for thermoelectric applications. Mater. Today Proc. 54, 820–826 (2022)

    Article  CAS  Google Scholar 

  38. P. Scherrer, Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen. Nachr. Ges. Wiss. Gottingen. 26, 98 (1918)

    Google Scholar 

  39. J.I. Langford, A.J.C. Wilson, Scherrer after 60 Y: a survey and some new results in the determinatoon of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  40. V. Gupta, Defect engineering in Te rich SnTe for thermoelectric applications. Mater. Today Proc. 54, 637–641 (2022)

    Article  Google Scholar 

  41. V. Gupta, Structural and morphological studies of Se doped SnTe thermoelectric materials. Mater. Today Proc. 62, 6420–6424 (2022)

    Article  Google Scholar 

  42. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  43. M.C. Robert, R. Saravanan, Single crystal X-ray analysis of electronic structure of the thermoelectric material Sn1-xGexTe. Indian J. Phys. 84(9), 1203–1210 (2010)

    Article  CAS  Google Scholar 

  44. G. Chen, Size and interface effects on thermal conductivity and superlattices and periodic thin film structures. J. Heat Transfer. 119(2), 220–229 (1997)

    Article  CAS  Google Scholar 

  45. P. Makula, M. Pacia, W. Macyk, How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. A. Bugalia, V. Gupta, Structural, morphological and spectroscopic studies of Bi-Ca co-doped SnTe. J. Mater. Sci.: Mater. Electron. 34, 2190 (2023)

    CAS  Google Scholar 

  47. Z. Chen et al., Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping. Chinese Phys. B. 27, 047202 (2018)

    Article  Google Scholar 

  48. A. Bugalia, V. Gupta, A. Pandey, Improvement in thermoelectric properties of Zn-Mn co-doped nanostructured SnTe through band engineering and chemical bond softening. J. Phys. D:Appl. Phys. 57, 195502 (2024)

    Article  Google Scholar 

  49. G.S. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. N. F. Mott, The Theory of Properties of Metals and Alloys (Dover Publications New York 1958)

  51. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005)

    Google Scholar 

  52. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  53. S. Gaurav, S.K. Pandey, Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials. J. Renew. Sustainale Energy 9, 014701 (2015)

    Article  Google Scholar 

  54. B. Sherman, R.R. Heikes, R.W. Ure, Calculation of efficiency of thermoelectric devices. J. Appl. Phys. 31(1), 1–16 (1960)

    Article  Google Scholar 

  55. G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91(14), 148301 (2003)

    Article  PubMed  Google Scholar 

  56. G.J. Snyder, A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 10, 2280–2283 (2017)

    Article  Google Scholar 

  57. G.J. Snyder, T. Caillat, Using the compatibility factor to design high efficiency segmented thermoelectric generators. Mater. Res. Soc. Symp. Proc. 793, 37–42 (2003)

    Google Scholar 

  58. S.D. Kang, G.J. Snyder, Transport property analysis method for thermoelectric materials: material quality factor and the effective mass model. arXiv: Mater. Sci. (2017). https://doi.org/10.48550/arXiv.1710.06896

    Article  Google Scholar 

  59. A. Zevalkink, D.M. Smiadak, J.L. Blackburn, A.J. Ferguson, M.L. Chabinyc, O. Delaire, J. Wang, K. Kovnir, J. Martin, L.T. Schelhas, T.D. Sparks, S.D. Kang, M.T. Dylla, G.J. Snyder, B.R. Ortiz, E.S. Toberer, A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Appl. Phys. Rev. 5(2), 021303 (2018)

    Article  Google Scholar 

  60. X. Zhang, Z. Bu, X. Shi, Z. Chen, S. Lin, B. Shan, M. Wood, A.H. Snyder, L. Chen, G.J. Snyder, Y. Pei, Electronic quality factor for thermoelectrics. Sci. Adv. 6, eabc0726 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge (i) Dr. Sudhir Kumar Pandey, School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand HP-175005 India for providing in-house developed facilities for thermoelectric measurements (ii) Material Research Centre, National Institute of Technology, Jaipur INDIA for Hall effect measurements.

Funding

No external funding was involved in the present research.

Author information

Authors and Affiliations

Authors

Contributions

Anita: Conceptualization, Investigation, Methodology, Formal Analysis, Writing – original draft. Vivek Gupta: Conceptualization, Methodology, Validation, Writing – review & editing, Supervision. Abhishek Pandey: Methodology, characterization, and validation.

Corresponding author

Correspondence to Vivek Gupta.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anita, Gupta, V. & Pandey, A. Improvement in thermoelectric properties of Bi-Mg co-doped SnTe via band engineering and nanostructuring. J Mater Sci: Mater Electron 35, 617 (2024). https://doi.org/10.1007/s10854-024-12358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12358-1

Navigation