Skip to main content
Log in

Tuning of structural and optical properties of reactively sputtered MoOx films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MoOx films were deposited using reactive sputtering of Mo under varying oxygen flow in the plasma ambient. The films showed a broad X-ray diffraction peak corresponding to MoOx structure. The surface morphology has been influenced significantly with the oxygen content in the plasma during the process of film deposition. The as-deposited films were porous at lower oxygen flow rate (< 10 sccm), while it showed coarse structure at the higher flow rates (> 15 sccm). The compositional analysis revealed that the films are sub-stoichiometric and the weight ratio of O/Mo varied from 1.5 to 2 in the O2 flow range of 5–25 sccm. The sub-stoichiometric phases of MoO3 were detected from FTIR analysis. The optical characteristics showed that the films were highly transparent (> 85%) in the visible region, and exhibited direct band gap energy of 3.66 eV. The optical constants, i.e., refractive index (n) and extinction coefficient (k) evaluated from spectroscopic ellipsometry were found to be 2.03 and 0.0035, respectively at the wavelength of 600 nm, for the films deposited at the optimum conditions. The films showed a broad luminescence with a strong emission at 400 nm, which would help improve the blue response of solar cells. The Al/MoOx/Si device showed a maximum barrier height, \({\phi }_{b}\) ~0.86 eV and a minimum leakage current, Io ~ 5.81 × 10–11 A at the higher O2 flow rates (> 15 sccm), which changed significantly with the oxygen flow rate. The study demonstrates the tunability of structural and optical characteristics, which have been significantly influenced by tuning the plasma ambient during the film deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. M.M. Makhlouf, H. Khallaf, M.M. Shehata, Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application. Appl. Phys. A 128, 98 (2022). https://doi.org/10.1007/s00339-021-05215-z

    Article  CAS  Google Scholar 

  2. C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng, W.C. Hsu, Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516(15), 4839–4844 (2008). https://doi.org/10.1016/j.tsf.2007.09.019

    Article  CAS  Google Scholar 

  3. R. Yordanov, S. Boyadjiev, V. Georgieva, L. Vergov, Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications. J. Phys. Conf. Ser. (2014). https://doi.org/10.1088/1742-6596/514/1/012040

    Article  Google Scholar 

  4. N. Maheswari, G. Muralidharan, Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Appl. Surf. Sci. 416, 461–469 (2017). https://doi.org/10.1016/j.apsusc.2017.04.094

    Article  CAS  Google Scholar 

  5. H. Luo, K. Wang, F. Lin, F. Lv, J. Zhou, W. Zhang, D. Wang, W. Zhang, Q. Zhang, L. Gu, M. Luo, S. Guo, Amorphous MoOx with high oxophilicity interfaced with PtMo alloy nanoparticles boosts anti-CO hydrogen electrocatalysis. Adv. Mater. 35(29), 1–9 (2023). https://doi.org/10.1002/adma.202211854

    Article  CAS  Google Scholar 

  6. J. Scarminio, A. Lourenço, A. Gorenstein, Electrochromism and photochromism in amorphous molybdenum oxide films. Thin Solid Films 302, 66–70 (1997). https://doi.org/10.1016/S0040-6090(96)09539-9

    Article  CAS  Google Scholar 

  7. C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars, Recent advances in electrochromics for smart windows applications. Sol. Energy 63, 199–216 (1998). https://doi.org/10.1016/S0038-092X(98)00074-7

    Article  CAS  Google Scholar 

  8. E. Bobeico, L.V. Mercaldo, P. Morvillo, I. Usatii, M.D. Noce, L. Lancellotti, C. Sasso, R. Ricciardi, P.D. Veneri, Evaporated MoOx as general back-side hole collector for solar cells. Coatings 10(1), 763 (2020). https://doi.org/10.3390/COATINGS10080763

    Article  CAS  Google Scholar 

  9. S. Subbarayudu, V. Madhavi, S. Uthanna, Growth of MoO3 Films by RF Magnetron Sputtering: Studies on the Structural, Optical, and Electrochromic Properties. Condensed Matter Phys. (2013). https://doi.org/10.1155/2013/806374

    Article  Google Scholar 

  10. A. Tyagi, J. Biswas, K. Ghosh, A. Kottantharayil, S. Lodha, Performance analysis of silicon carrier selective contact solar cells with ALD MoOx as hole selective layer. Silicon 14, 1663–1670 (2022). https://doi.org/10.1007/s12633-021-00984-x

    Article  CAS  Google Scholar 

  11. R.S. Patil, M.D. Uplane, P.S. Patil, Structural and optical properties of electrodeposited molybdenum oxide thin films. Appl. Surf. Sci. 252, 8050 (2006). https://doi.org/10.1016/j.apsusc.2005.10.016

    Article  CAS  Google Scholar 

  12. I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: A review. Surf. Coatings Technol. 127(2–3), 203 (2000). https://doi.org/10.1016/s0257-8972(00)00566-1

    Article  CAS  Google Scholar 

  13. M. Rabizadeh, M.H. Ehsani, M.M. Shahidi, Tuning of physical properties in MoO3 thin films deposited by DC sputtering. Opt. Quantum Electron. 53(12), 1–17 (2021). https://doi.org/10.1007/s11082-021-03360-6

    Article  CAS  Google Scholar 

  14. K. Srinivasarao, B. Rajini Kanth, P.K. Mukhopadhyay, Optical and IR studies on r.f. magnetron sputtered ultra-thin MoO3 films. Appl. Phys. A Mater. Sci. Process. 96(4), 985–990 (2009). https://doi.org/10.1007/s00339-009-5132-3

    Article  CAS  Google Scholar 

  15. T.S. Sian, G.B. Reddy, Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Sol. Energy Mater. Sol. Cells 82, 375–386 (2004). https://doi.org/10.1016/j.solmat.2003.12.007

    Article  CAS  Google Scholar 

  16. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T.P. Leervad Pedersen, R. Drese, M. Wuttig, Correlation between structure, stress and optical properties in direct current sputtered molybdenum oxide films. Thin Solid Films 429(1–2), 135–143 (2003). https://doi.org/10.1016/S0040-6090(03)00068-3

    Article  CAS  Google Scholar 

  17. I. Navas, R. Vinodkumar, V.P.M. Pillai, Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl. Phys. A 103, 373–380 (2011). https://doi.org/10.1007/s00339-011-6345-9

    Article  CAS  Google Scholar 

  18. N. Lopez-Pinto, T. Tom, J. Bertomeu, J.M. Asensi, E. Ros, P. Ortega, C. Voz, Deposition and characterization of sputtered molybdenum oxide thin films with hydrogen atmosphere. Appl. Surf. Sci. 563, 150285 (2021). https://doi.org/10.1016/j.apsusc.2021.150285

    Article  CAS  Google Scholar 

  19. H. Mehmood, G. Bektaş, İ Yıldız, T. Tauqeer, H. Nasser, R. Turan, Electrical, optical and surface characterization of reactive RF magnetron sputtered molybdenum oxide films for solar cell applications. Mater. Sci. Semicond. Process. 101, 46–56 (2019). https://doi.org/10.1016/j.mssp.2019.05.018

    Article  CAS  Google Scholar 

  20. S. Touihri, A. Arfaoui, Y. Tarchouna, A. Labidi, M. Amlouk, J.C. Bernede, Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing. Appl. Surf. Sci. 394, 414–424 (2017). https://doi.org/10.1016/j.apsusc.2016.10.139

    Article  CAS  Google Scholar 

  21. I. Kostis, N. Vourdas, G. Papadimitropoulos, A. Douvas, M. Vasilopoulou, N. Boukos, D. Davazoglou, Effect of the oxygen sub-stoichiometry and of hydrogen insertion on the formation of intermediate bands within the gap of disordered molybdenum oxide films. J. Phys. Chem. C 117(35), 18013–18020 (2013). https://doi.org/10.1021/jp407354j

    Article  CAS  Google Scholar 

  22. S. Kumari, K. Singh, P. Singh, S. Kumar, A. Thakur, Thickness dependent structural, morphological and optical properties of molybdenum oxide thin films. SN Appl. Sci. 2, 1439 (2020). https://doi.org/10.1007/s42452-020-3193-2

    Article  CAS  Google Scholar 

  23. V. Nirupama, K.R. Gunasekhar, B. Sreedhar, S. Uthanna, Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films. Curr. Appl. Phys. 10(1), 272–278 (2010). https://doi.org/10.1016/j.cap.2009.06.005

    Article  Google Scholar 

  24. I. Navas, R. V. Kumar, K. Maniammal, and V. P. M. Pillai. (2011) “Amorphous molybdenum oxide nanorods for electrochromic applications.” Int. Congr. Ultra Mod. Telecommun. Control Syst. Work. 1–5.

  25. M.T. Greiner, M.G. Helander, W.M. Tang, Z. Bin Wang, J. Qiu, Z.H. Lu, Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11(1), 76–81 (2012). https://doi.org/10.1038/nmat3159

    Article  CAS  Google Scholar 

  26. I. Navas, R. Vinodkumar, K.J. Lethy, M. Satyanarayana, V. Ganesan, V.P.M. Pillai, Effect of zinc oxide doping on the structural and optical characterization of nanostructured molybdenum oxide films. J. Nanosci. Nanotechnol. 9(9), 5254–5261 (2009). https://doi.org/10.1166/jnn.2009.1163

    Article  CAS  PubMed  Google Scholar 

  27. P.R. Huang, Y. He, C. Cao, Z.H. Lu, Impact of lattice distortion and electron doping on a-MoO3 electronic structure. Sci. Rep. 4, 7131 (2014). https://doi.org/10.1038/srep07131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. X.D. Li, T.P. Chen, P. Liu, Y. Liu, Z. Liu, K.C. Leong, A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness. J. Appl. Phys. 115, 103512 (2014). https://doi.org/10.1063/1.4868338

    Article  CAS  Google Scholar 

  29. M. Itoh, K. Hayakawa, S. Oishi, Optical properties and electronic structures of layered MoO3 single crystals. J. Phys. Condens. Matter 13, 6853 (2001). https://doi.org/10.1088/0953-8984/13/31/319

    Article  CAS  Google Scholar 

  30. Z. Hussain, Optical and electrochromic properties of heated and annealed MoO3 thin films. J. Mater. Res. 16(9), 2695–2708 (2001). https://doi.org/10.1557/JMR.2001.0369

    Article  CAS  Google Scholar 

  31. O. Kamoun, A. Mami, M.A. Amara, R. Vidu, M. Amlouk, Nanostructured Fe, Co-co-doped MoO3 thin films. Micromachines (2019). https://doi.org/10.3390/mi10020138

    Article  PubMed  PubMed Central  Google Scholar 

  32. Y. Zhao, J. Liu, Y. Zhou, Z. Zhang, Y. Xu, H. Naramoto, S. Yamamoto, Preparation of MoO3 nanostructures and their optical properties. J. Phys. Condens. Matter 15, L547–L552 (2003). https://doi.org/10.1088/0953-8984/15/35/101

    Article  CAS  Google Scholar 

  33. R.K. Sharma, G.B. Reddy, Synthesis and characterization of MoO3 microspheres packed with nanoflakes. J. Phys. D Appl. Phys. 47(6), 065305 (2014). https://doi.org/10.1088/0022-3727/47/6/065305

    Article  CAS  Google Scholar 

  34. I. Navas, R. Vinodkumar, V.P. Mahadevan Pillai, Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl. Phys. A Mater. Sci. Process. 103(2), 373–380 (2011). https://doi.org/10.1007/s00339-011-6345-9

    Article  CAS  Google Scholar 

  35. R. Garcia-Hernansanza, E. Garcia-Hemmea, D. Monteroa, J. Oleaa, A. del Pradoa, I. Martila, C. Vozb, L.G. Gerlingb, J. Puigdollersb, R. Alcubilla, Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Solar Energy Mater. Solar Cells 185, 61–65 (2018). https://doi.org/10.1016/j.solmat.2018.05.019

    Article  CAS  Google Scholar 

  36. Z.Q. Liu, D.P. Leusink, W.M. Lu, X. Wang, X.P. Yang, K. Gopinadhan, Y.T. Lin, A. Annadi, Y.L. Zhao, A.R. Barman, S. Dhar, Reversible metal-insulator transition in LaAlO3 thin films mediated by intragap defects: an alternative mechanism for resistive switching. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.84.165106

    Article  Google Scholar 

  37. A. Kumar, S.N. Singh, Jyoti, S. Tomer, Vandana, S.K. Srivastava, M. Dutta, P. Pathi, A novel analytical method for determination of diode parameters from the dark forward I—V characteristics of a silicon solar cell. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/ace55d

    Article  Google Scholar 

  38. H.H. Gullu, D.E. Yildiz, O. Surucu, M. Parlak, Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode. J. Mater. Sci. Mater. Electron. 31, 9394 (2020). https://doi.org/10.1007/s10854-020-03479-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-National Physical Laboratory, New Delhi, for the experimental facilities. The author Abhishek Kumar gratefully acknowledges the support of Ministry of New and Renewable Energy (MNRE), Govt. of India for providing NREF fellowship (Ref. No. 10/2(2)2017-HRD, Dt. 30.03.2018).

Author information

Authors and Affiliations

Authors

Contributions

Abhishek Kumar: Writing—original draft, Investigation, Data curation, Conceptualization. Mrinal Dutta: Review & Editing, Data Curation. Shweta Tomer: Data Curation. Pritty Rao: Data Curation. Vandana: Review & Editing, Supervision. Sanjay Kumar Srivastava: Review & Editing. S. N. Singh: Review & Editing, Supervision. Prathap Pathi: Review & Editing, Data curation, Supervision, Resources.

Corresponding author

Correspondence to Prathap Pathi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Dutta, M., Tomer, S. et al. Tuning of structural and optical properties of reactively sputtered MoOx films. J Mater Sci: Mater Electron 35, 612 (2024). https://doi.org/10.1007/s10854-024-12324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12324-x

Navigation