Skip to main content
Log in

Synthesis and characterization of high-performance electromagnetic wave absorption of CoS/Co9S8/WS2 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The heterogeneous CoS and WS2 composites were prepared via the simple hydrothermal method. The introduction of WS2 can reinforce the electrical conductivity of the composites. The introduction of WS2 can augment the specific surface area and pore space of the composite; polarization occurring in the two different materials results in enhanced absorption of electromagnetic waves. By changing the mass fraction of WS2 in CoS/Co9S8 materials, the composites can absorb electromagnetic waves to the greatest extent possible. When the CoS/Co9S8/WS2 composite containing 10 wt% of WS2, attains the minimum reflection loss (RLmin) of − 29.3 dB at the thickness of 1.3 mm in 16.9 GHz when the filler loading is 50 wt%. The results of the above experimental data prove that the prepared CoS/Co9S8/WS2 composites have the superiority of simple preparation, low weight, strong absorption capacity, thin thickness and wide bandwidth, which has high research value in microwave absorption field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All experimental data of this study are available from the corresponding author.

References

  1. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401 (2004). https://doi.org/10.1002/adma.200306460

    Article  CAS  Google Scholar 

  2. D. Sun, Q. Zou, G. Qian, C. Sun, W. Jiang, F. Li, Acta Mater. 61, 5829 (2013). https://doi.org/10.1016/j.actamat.2013.06.030

    Article  CAS  Google Scholar 

  3. T. Wang, H. Wang, X. Chi, R. Li, J. Wang, Carbon 74, 312 (2014). https://doi.org/10.1016/j.carbon.2014.03.037

    Article  CAS  Google Scholar 

  4. X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi, W. Wang, ACS Appl. Mater. Interfaces 12, 11252 (2020). https://doi.org/10.1021/acsami.9b23489

    Article  CAS  PubMed  Google Scholar 

  5. X. Zhang, S. Qi, Y. Zhao, L. Wang, J. Fu, M. Yu, RSC Adv. 10, 32561 (2020). https://doi.org/10.1039/d0ra03547e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Zhao, H.-B. Zhang, J.-Q. Luo et al., ACS Nano 12, 11193 (2018). https://doi.org/10.1021/acsnano.8b05739

    Article  CAS  PubMed  Google Scholar 

  7. Z. Zhu, X. Sun, H. Xue et al., J. Mater. Chem. C 2, 6582 (2014). https://doi.org/10.1039/c4tc00757c

    Article  CAS  Google Scholar 

  8. Y. Al-Douri, H. Khachai, R. Khenata, Mater. Sci. Semicond. Process. 39, 276 (2015). https://doi.org/10.1016/j.mssp.2015.05.016

    Article  CAS  Google Scholar 

  9. K. Boudiaf, A. Bouhemadou, O. Boudrifa et al., J. Electron. Mater. 46, 4539 (2017). https://doi.org/10.1007/s11664-017-5452-6

    Article  CAS  Google Scholar 

  10. Y. Al-Douri, H. Baaziz, Z. Charifi, A.H. Reshak, Physica B 407, 286 (2012). https://doi.org/10.1016/j.physb.2011.09.127

    Article  CAS  Google Scholar 

  11. D. Rached, M. Rabah, N. Benkhettou et al., Comput. Mater. Sci. 37, 292 (2006). https://doi.org/10.1016/j.commatsci.2005.08.005

    Article  CAS  Google Scholar 

  12. C.-H. Lai, M.-Y. Lu, L.-J. Chen, J. Mater. Chem. 22, 19 (2012). https://doi.org/10.1039/c1jm13879k

    Article  CAS  Google Scholar 

  13. T. Huang, M. He, Y. Zhou et al., Synth. Met. 224, 46 (2017). https://doi.org/10.1016/j.synthmet.2016.12.015

    Article  CAS  Google Scholar 

  14. T. Huang, M. He, Y. Zhou et al., RSC Adv. 6, 100392 (2016). https://doi.org/10.1039/c6ra22920d

    Article  CAS  Google Scholar 

  15. H.-Y. Wang, X.-B. Sun, S.-H. Yang et al., Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00727-y

    Article  Google Scholar 

  16. H. Zhao, X. Xu, Y. Wang et al., Small (2020). https://doi.org/10.1002/smll.202003407

    Article  PubMed  PubMed Central  Google Scholar 

  17. S.K. Dhawan, K. Singh, A.K. Bakhshi, A. Ohlan, Synth. Met. 159, 2259 (2009). https://doi.org/10.1016/j.synthmet.2009.08.031

    Article  CAS  Google Scholar 

  18. F. Meng, H. Wang, F. Huang et al., Compos. B Eng. 137, 260 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023

    Article  CAS  Google Scholar 

  19. D. Zhang, Y. Jia, J. Cheng et al., J. Alloy. Compd. 758, 62 (2018). https://doi.org/10.1016/j.jallcom.2018.05.130

    Article  CAS  Google Scholar 

  20. X. Wang, S. Wei, Y. Yuan et al., J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164676

    Article  Google Scholar 

  21. X.-H. Guan, P. Qu, X. Guan, G.-S. Wang, RSC Adv. 4, 15579 (2014). https://doi.org/10.1039/c4ra00659c

    Article  CAS  Google Scholar 

  22. J. Ma, H. Ren, X. Zhang et al., J. Magn. Magn. Mater. (2023). https://doi.org/10.1016/j.jmmm.2023.170390

    Article  Google Scholar 

  23. H. Yuan, Z. Liu, Y. Zhang et al., RSC Adv. 12, 25323 (2022). https://doi.org/10.1039/d2ra04764k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Al-Douri, U. Hashim, J. Renew. Sustain. Energy. (2014). https://doi.org/10.1063/1.4862152

    Article  Google Scholar 

  25. A. Benkabou, H. Bouafia, B. Sahli et al., Chin. J. Phys. 54, 33 (2016). https://doi.org/10.1016/j.cjph.2016.03.001

    Article  CAS  Google Scholar 

  26. T. Seddik, R. Khenata, A. Bouhemadou et al., Physica B 428, 78 (2013). https://doi.org/10.1016/j.physb.2013.07.014

    Article  CAS  Google Scholar 

  27. J.-B. Cheng, H.-G. Shi, M. Cao, T. Wang, H.-B. Zhao, Y.-Z. Wang, Mater. Adv. 1, 2631 (2020). https://doi.org/10.1039/d0ma00662a

    Article  CAS  Google Scholar 

  28. G. Tang, H. Tang, C. Li, W. Li, X. Ji, Mater. Lett. 65, 3457 (2011). https://doi.org/10.1016/j.matlet.2011.07.033

    Article  CAS  Google Scholar 

  29. F. Yan, J. Kang, S. Zhang et al., Nanoscale 10, 18742 (2018). https://doi.org/10.1039/c8nr07338d

    Article  CAS  PubMed  Google Scholar 

  30. B. Gao, L. Qiao, J. Wang et al., J.Phys. D: Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/23/235005

    Article  Google Scholar 

  31. P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang, J. Luo, Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.108406

    Article  Google Scholar 

  32. X. Liu, X. Nie, R. Yu, H. Feng, Chem. Eng. J. 334, 153 (2018). https://doi.org/10.1016/j.cej.2017.10.012

    Article  CAS  Google Scholar 

  33. B. Quan, X. Liang, G. Ji et al., ACS Appl. Mater. Interfaces 9, 9964 (2017). https://doi.org/10.1021/acsami.6b15788

    Article  CAS  PubMed  Google Scholar 

  34. T. Huang, M. He, Y. Zhou et al., J. Mater. Sci. Mater. Electron. 28, 7622 (2017). https://doi.org/10.1007/s10854-017-6455-z

    Article  CAS  Google Scholar 

  35. F. Qin, C. Brosseau, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3688435

    Article  Google Scholar 

  36. L. Wang, X. Bai, T. Zhao, Y. Lin, J. Colloid Interface Sci. 580, 126 (2020). https://doi.org/10.1016/j.jcis.2020.07.025

    Article  CAS  PubMed  Google Scholar 

  37. P. Liu, S. Gao, X. Liu, Y. Huang, W. He, Y. Li, Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.107992

    Article  Google Scholar 

  38. X. Su, J. Wang, X. Zhang et al., Ceram. Int. 46, 12353 (2020). https://doi.org/10.1016/j.ceramint.2020.01.286

    Article  CAS  Google Scholar 

  39. G. Cui, L. Wang, L. Li, W. Xie, G. Gu, Progr. Nat. Sc.: Mater. Int. 30, 343 (2020). https://doi.org/10.1016/j.pnsc.2020.06.001

    Article  CAS  Google Scholar 

  40. L. Fu, P.B. Macedo, L. Resca, Phys. Rev. B 47, 13818 (1993). https://doi.org/10.1103/PhysRevB.47.13818

    Article  CAS  Google Scholar 

  41. Y. Zhang, Y. Huang, H. Chen et al., Carbon 105, 438 (2016). https://doi.org/10.1016/j.carbon.2016.04.070

    Article  CAS  Google Scholar 

  42. J.-Z. He, X.-X. Wang, Y.-L. Zhang, M.-S. Cao, J. Mater. Chem. C 4, 7130 (2016). https://doi.org/10.1039/c6tc02020h

    Article  CAS  Google Scholar 

  43. Y. Qi, T. Zhang, N. Wu et al., ACS Appl. Energy Materials 4, 5574 (2021). https://doi.org/10.1021/acsaem.1c00271

    Article  CAS  Google Scholar 

  44. D. Liu, Y. Du, F. Wang et al., Carbon 157, 478 (2020). https://doi.org/10.1016/j.carbon.2019.10.056

    Article  CAS  Google Scholar 

  45. W. Uddin, Su. Rehman, M.A. Aslam, Su. Rehman, M. Wu, M. Zhu, Mater. Res.Bulletin. (2020). https://doi.org/10.1016/j.materresbull.2020.110943

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China under contract No. 51802177, the Key Natural Science Research Project for Colleges and Universities of Anhui Province (2022AH050403 and 2022AH050401) and Support Program for Outstanding Young Talents in Colleges and Universities of Anhui Province (gxyq2022023).

Author information

Authors and Affiliations

Authors

Contributions

The sample preparation was done by ZDL. The data processing was mainly done by ZDL. YNZ, CHW, WAK, GL and YPS were responsible for designing the experiments and ensuring the feasibility of the experiments. The first draft of the manuscript was written and revised by ZDL, and MZ and SGT were responsible for revising and finalizing the manuscript.

Corresponding authors

Correspondence to Min Zhang or Shugang Tan.

Ethics declarations

Competing interests

There are no conflicts to declare.

Ethical approval

As a result, I (Dr. Shugang Tan) declare that this manuscript satisfies the following conditions: This manuscript is the original manuscript of the author. The manuscript has never been published elsewhere and is not being considered for publication elsewhere. The experimental data in this manuscript are authentic and valid. All co-authors have contributed to this manuscript. The sources used in this manuscript have been properly cited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 654 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, Y., Wang, C. et al. Synthesis and characterization of high-performance electromagnetic wave absorption of CoS/Co9S8/WS2 composites. J Mater Sci: Mater Electron 35, 508 (2024). https://doi.org/10.1007/s10854-024-12288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12288-y

Navigation