Skip to main content
Log in

Synthesis, characterization, and dielectric spectroscopy of TiO2 and ZnO nanoparticle-reinforced epoxy composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epoxy nanocomposites exhibit remarkable characteristics by synergistically integrating the characteristics of epoxy resin with the unique properties of nanoparticles. This study focuses on the incorporation of ZnO and TiO2 nanoparticles into epoxy composites and investigates their impact on dielectric properties. A three-dimensional crosslinked structure was formed using Bisphenol-A epoxy resin and amine hardener. Dielectric spectroscopic assessments of the nanoparticle-doped epoxy composites were conducted over a frequency range of 20 Hz to 2 MHz and extended to 200 MHz to 20 GHz. The research provides a detailed analysis of the influence of ZnO and TiO2 nanoparticles on pristine, undoped epoxy resin. We present Regression analysis which is a useful tool for predicting the dielectric constant of intermediate frequency because it can save time and resources. Experiment data from tests show that using the XGBoost regression analysis can result in a 60% reduction in both time and resource requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. R. Vengatesan, V. Mittal, Spherical and Fibrous Filler Composites. 1 (2016).

  2. B. Joseph, S. Krishnan, V.K. Sagarika, A. Tharayil, N. Kalarikkal, S. Thomas, Emergent Mater. 3, 711 (2020)

    Article  CAS  Google Scholar 

  3. P. Porov, V.S. Chandel, R. Manohar, Trans. Electr. Electron. Mater. 17, 69 (2016)

    Article  Google Scholar 

  4. I. Khan, I. Khan, K. Saeed, N. Ali, N. Zada, A. Khan, F. Ali, M. Bilal, M. S. Akhter. Smart Polym. Nanocomposites 167 (2023).

  5. H. Minhas, D. Kumar, A. Kumar, Mater. Res. Express 6, 105049 (2019)

    Article  CAS  Google Scholar 

  6. H. Singh, S. Parmar, B. Ray, V.K. Lokku, D. Kumar, K.L. Bhavani, D. Nagaraju, D.-V.N. Vo, A. Sharma, S. Datar, J. Alloys Compd. 906, 164199 (2022)

    Article  CAS  Google Scholar 

  7. J. Hornak, T. Kubes, and P. Trnka, in 2020 Int. Conf. Diagnostics Electr. Eng. (IEEE, 2020), pp. 1–4.

  8. I. S. Mohammed, J. M. Mansoor, H. W. Abdullah, and A. A. Habeeb, in AIP Conf. Proc. (AIP Publishing, 2023).

  9. S.K. Das, D. Bharatiya, B. Parhi, S.K. Swain, J. Energy Storage 73, 108930 (2023)

    Article  Google Scholar 

  10. A. R. Sousa, J. Barbosa, O. S. G. P. Soares, J. Ferreira, A. Gonçalves, G. Santos, A. Silva, J. Morgado, P. Soares. S. A. Bunyaev, in 10 Th Eur. Conf. Prot. Cloth. (2023), p. 72.

  11. G. D. Sani, A. Yakubu, A. Saidu, R. Aati, S. Sahabi, S. Abdullahi, (n.d.).

  12. S. Pathania, P. Chinnamuthu, D. Kumar, T. Kumar, V. Singh, R. Jha, J.J.L. Hmar, Mater. Sci. Semicond. Process. 170, 107953 (2024)

    Article  Google Scholar 

  13. H. Singh, D. Kumar, K.K. Sawant, N. Devunuri, S. Banerjee, Polym. Plast. Technol. Eng. 55, 149 (2016)

    Article  CAS  Google Scholar 

  14. A.Q. Malik, O. Amin, M. Sathish, D. Kumar, Inorg. Chem. Commun. 143, 109797 (2022)

    Article  CAS  Google Scholar 

  15. A. Athawale, A. Bokare, H. Singh, V.-H. Nguyen, D.-V.N. Vo, D. Kumar, A. Sharma, Top. Catal. 63, 1056 (2020)

    Article  CAS  Google Scholar 

  16. Y. Umeda, H. Hayashi, H. Moriwake, I. Tanaka. Jpn. J. Appl. Phys. (2019).

  17. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad. Sci. Rep. (2013).

  18. P. H. Thike, Z. Zhao, P. Shi, Y. Jin. Bull. Mater. Sci. (2020).

  19. J. Wei, X. Chu, X. Y. Sun, K. Xu, H. X. Deng, J. Chen, Z. Wei, M. Lei. InfoMat (2019).

  20. P. Y. Taser, G. Onsal, and O. Ugurlu. Bull. Mater. Sci. (2023).

  21. P. Jain, H. Chhabra, U. Chauhan, K. Prakash, A. Gupta, M.S. Soliman, M.S. Islam, M.T. Islam, Sci. Rep. 13, 1792 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Jain, H. Chhabra, U. Chauhan, D.K. Singh, T.M.K. Anwer, S.H. Ahammad, M.A. Hossain, A.N.Z. Rashed, Mater. Chem. Phys. 307, 128180 (2023)

    Article  CAS  Google Scholar 

  23. S.G. Thakor, V.A. Rana, H.P. Vankar, T.R. Pandit, J. Adv. Dielectr. 11, 2150011 (2021)

    Article  CAS  Google Scholar 

  24. SPEAG, DAK Dielectric Assessment Kit Professional Handbook V 2.4 (Schmid & Partner Engineering AG, 2017).

  25. T. Scientific, E. 260 B. UV-Visible, and S. Manual, (n.d.).

  26. P. Sharma, D. V Shah, S. Thakor, A. D. Watpade, V. A. Rana, and C. R. Vaja, J. Macromol. Sci. Part B 1 (2023).

  27. K.A. Mauritz, Macromolecules 22, 4483 (1989)

    Article  CAS  Google Scholar 

  28. S. G. Thakor, V. A. Rana, and H. P. Vankar, in AIP Conf. Proc. (AIP Publishing, 2018), p. 50049.

  29. S. Thakor, V. A. Rana, and H. P. Vankar, in AIP Conf. Proc. (AIP Publishing, 2017), p. 40025.

  30. M.M. Abutalib, A. Rajeh, J. Organomet. Chem. 920, 121348 (2020)

    Article  CAS  Google Scholar 

  31. P.N. Vakil, F. Muhammed, D. Hardy, T.J. Dickens, S. Ramakrishnan, G.F. Strouse, ACS Omega 3, 12813 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Wang, C. Liu, S. Shen, M. Xu, X. Liu, Adv. Ind. Eng. Polym. Res. 3, 138 (2020)

    Google Scholar 

  33. S.G. Thakor, V.A. Rana, H.P. Vankar, T.R. Pandit, Indian J. Pure Appl. Phys. 59, 643 (2021)

    Google Scholar 

  34. S. K. Patel, J. Surve, V. Katkar, J. Parmar, F. A. Al-Zahrani, K. Ahmed, and F. M. Bui, IEEE Access (2022).

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Atul D. Watpade: Spearheaded sample synthesis, characterized materials, conducted analyses, and drafted the manuscript. Sanketsinh Thakor: Ensured precision in dielectric characterizations and Provided guidance for the basic write-up on machine learning. Contributed to reviewing the manuscript. Poonam Sharma: Contributed UV and FTIR analyses, enhancing material characterization. Dimple V. Shah: Guided experimental work, reviewed data critically, and provided comprehensive manuscript updates. Chandan R. Vaja: Collected dielectric characterization data and offered assistance in basic analysis. Prince Jain: Reviewed and improved machine learning sections, contributing to manuscript refinement.

Corresponding author

Correspondence to Dimple V. Shah.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watpade, A.D., Thakor, S., Sharma, P. et al. Synthesis, characterization, and dielectric spectroscopy of TiO2 and ZnO nanoparticle-reinforced epoxy composites. J Mater Sci: Mater Electron 35, 466 (2024). https://doi.org/10.1007/s10854-024-12202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12202-6

Navigation