Skip to main content
Log in

Enhanced Mn2+ emission from cation disordered substitution in Ba6CaNaYAl2Si6O24:Eu2+, Mn2+ phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The emission of Mn2+ in an orange hue within cation-disordered optical materials, consisting of Ba6CaNaYAl2Si6O24:Eu2+, Mn2+, was significantly enhanced through efficient energy transfer, when compared to the performance of Eu2+, Mn2+-doped Ba6Ca3Al2Si6O24 phosphors. The degree of polyhedral distortions within the Ba6CaNaYAl2Si6O24 structure was ascertained using synchrotron X-ray powder diffraction. The cation-disordered host structure incorporates 12-, 9-, and 10-coordinated polyhedra involving Ba(I), Ca/Y(II), and Ba/Na(III) ions, along with AlO6 octahedra and isolated SiO4 tetrahedra. Photoluminescence emission spectra of the cation-disordered Ba5.9-qEu0.1MnqCaNaYAl2Si6O24 (q = 0–0.4) phosphors were examined, along with the energy-transfer process from Eu2+ to Mn2+ according to Förster’s theory, both occurring under 365-nm excitation. White and orange electroluminescent emission spectra, color rendering index, correlated color temperature, Commission Internationale de l’Eclairage coordinates, and internal/external quantum efficiency were measured for Ba5.5Eu0.1Mn0.2CaNaYAl2Si6O24 phosphors, both with and without commercial phosphors on a 365-nm LED chip. Moreover, the activation energy of thermal quenching for Ba5.9-q-Eu0.1MnqCaNaYAl2Si6O24 (q = 0.2, 0.4) phosphors within the temperature range of 298–448 K was determined when illuminated by a 365-nm light-emitting diode (LED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors state that data supporting this study in the manuscript are available on reasonable request.

References

  1. G.B. Naira, H.C. Swarta, S.J. Dhoble, A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 109, 100622 (2020)

    Article  Google Scholar 

  2. J. McKittrick, L.E. Shea-Rohwer, Review: down conversion materials for solid-state lighting. J. Am. Ceram. Soc. 97, 1327–1352 (2014)

    Article  CAS  Google Scholar 

  3. S. Ye, F. Xiao, Y.X. Parn, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R 71, 1–34 (2010)

    Article  Google Scholar 

  4. J. Ueda, S. Tanabe, Review of luminescent properties of Ce3+-doped garnet phosphors: new insight into the effect of crystal and electronic structure. Opt. Mater. X 1, 100018 (2019)

    CAS  Google Scholar 

  5. Z. Xia, A. Meijerink, Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. Chem. Soc. Rev. 46, 275–299 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. S. Yang, S. Park, Luminescent performances of Ba9-pCapAl2Si6O24:Eu2+, Mn2+ orthosilicate phosphors along with Ca2+ contents. Opt. Mater. 114, 110968 (2021)

    Article  CAS  Google Scholar 

  7. Z. Sun, Z. Zhu, J. Luo, Z. Guo, X. Zhang, Z.-C. Wu, High-efficient and thermal-stable Ca19Zn2(PO4)14:Eu2+, Mn2+ blue-red dual-emitting phosphor for plant cultivation LEDs. J. Alloys Compd. 811, 151956 (2019)

    Article  CAS  Google Scholar 

  8. Q. Zhang, J. Li, W. Jiang, L. Lin, J. Ding, M.G. Brik, M.S. Molokeev, H. Ni, M. Wu, CaY2Al4SiO12:Ce3+, Mn2+: a single component phosphor to produce high color rendering index WLEDs with a blue chip. J. Mater. Chem. C 9, 11292 (2021)

    Article  CAS  Google Scholar 

  9. D. Pasiński, E. Zych, J. Sokolnicki, Ce3+ to Mn2+ energy transfer in Sr3Y2Ge3O12:Ce3+, Mn2+ garnet phosphor. J. Alloy Compds. 653, 636–642 (2015)

    Article  Google Scholar 

  10. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramićann, M.G. Brik, M. Wu, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C 6, 2652–2671 (2018)

    Article  CAS  Google Scholar 

  11. C.C. Lin, Y.-T. Tsai, H.E. Johnston, M.-H. Fang, F. Yu, W. Zhou, P. Whitfield, Y. Li, J. Wang, R.-S. Liu, J.P. Attfield, Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors. J. Am. Chem. Soc. 139, 11766–11770 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Kim, S. Park, Preparation and luminescent properties of Eu-substituted barium–yttrium orthosilicate phosphors. Opt. Mater. 36, 458–462 (2013)

    Article  ADS  CAS  Google Scholar 

  13. S. Shin, S. Yang, S.-H. Lee, T.J. Shin, S. Park, Distinctive occurrences of green-yellow luminescence from orthogermanate-type Ba9Y2(GeO4)6:Ce3+, Na+ phosphors under blue excitation and white-light performance with light-emitting diodes. J. Alloys Compds. 897, 163213 (2022)

    Article  CAS  Google Scholar 

  14. F. Lin, X. Li, C. Chen, X. Pan, D. Peng, H. Luo, L. Jin, Y. Zhuang, R.J. Xie, Modeling polyhedron distortion for mechanoluminescence in mixed-anion compounds RE2O3S:Ln3+. Chem. Mater. 34, 5311–5319 (2022)

    Article  CAS  Google Scholar 

  15. M. Chen, Z. Xia, M.S. Molokeev, T. Wang, Q. Liu, Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2-(1–x)Ca10Li(PO4)7:Eu2+ phosphors. Chem. Mater. 29, 1430–1438 (2017)

    Article  CAS  Google Scholar 

  16. S. Shin, S. Park, Color-tunable Bi3+–Tb3+–Eu3+ co-activated barium–yttrium-orthogermanate phosphors for applying white-light UV-LED. J. Mater. Sci. 34, 287 (2023)

    CAS  Google Scholar 

  17. D.L. Dexter, A theory of sensitizer luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  ADS  CAS  Google Scholar 

  18. T.-M. Chen, Y.-J. Yang, Phosphors, Up Conversion Nanoparticles, Quantum Dots and Their Applications (Springer, Berlin, 2017), pp.31–53

    Book  Google Scholar 

  19. W.R. Liu, C.H. Huang, C.W. Yeh, J.C. Tsai, Y.C. Chiu, Y.T. Yeh, A study on the luminescence and energy transfer of single-phase and color-tunable KCaY(PO4)2:Eu2+, Mn2+ phosphor for application in white-light LEDs. Inorg. Chem. 51, 9636–9641 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. W.J. Yang, L. Luo, T.-M. Chen, N.-S. Wang, Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED. Chem. Mater. 17, 3883–3888 (2005)

    Article  CAS  Google Scholar 

  21. E. Gökoğlu, E. Yilmaz, Fluorescence interaction and determination of sulfathiazole with trypsin. J. Fluoresc. 24, 1439–1445 (2014)

    Article  PubMed  Google Scholar 

  22. A. Krishnan, T.S. Sreeremya, A.P. Mohamed, U.S. Hareesh, S. Ghosh, Concentration quenching in cerium oxide dispersions via a Förster resonance energy transfer mechanism facilitates the identification of fatty acids. RSC Adv. 5, 23965–23972 (2015)

    Article  ADS  CAS  Google Scholar 

  23. J. Huo, A. Yu, Q. Ni, D. Guo, J. Gao, Y. Zhang, Q. Wang, Efficient energy transfer from trap levels to Eu3+ leads to antithermal quenching effect in high-power white light-emitting diodes. Inorg. Chem. 59, 15514–15525 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. W.-W. Hu, W.-W. Ji, S.A. Khan, L.U. Hao, X. Xu, L.-J. Yin, S. Agathopoulos, Preparation of Sr1-xCaxLiAl3N4:Eu2+ solid solutions and their photoluminescence properties. J. Am. Ceram. Soc. 99, 3273–3279 (2016)

    Article  CAS  Google Scholar 

  25. J. Ni, Q. Liu, Z. Zhou, G. Liu, Co-doping effect of Mn2+ on fluorescence thermosstability of Ca-a-sialon:Eu2+ phosphors. RSC Adv. 7, 42211–42217 (2017)

    Article  ADS  CAS  Google Scholar 

  26. J. Cui, Y. Zheng, Z. Wang, L. Cao, X. Wang, Y. Yao, M. Zhang, Z. Yang, P. Li, Improving the luminescence thermal stability of Ca3Y2Ge3O12:Cr3+ based on cation substitution and its application in NIR LEDs. Mater. Adv. 3, 2772–2778 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the ministry of Education, Science and Technology (NRF-2018R1D1A3B07048543).

Funding

Funding was provided by National Research Foundation of Korea (NRF) (Grant no. NRF-2018R1D1A3B07048543).

Author information

Authors and Affiliations

Authors

Contributions

SP: Supervision, Conceptualization, Methodology, Writing, Reviewing and Editing. HH: Synthesis, Data curation, Software, Writing-original draft. SY: Data curation, Software, Writing-original draft.

Corresponding author

Correspondence to Sangmoon Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, H., Yang, S. & Park, S. Enhanced Mn2+ emission from cation disordered substitution in Ba6CaNaYAl2Si6O24:Eu2+, Mn2+ phosphors. J Mater Sci: Mater Electron 35, 343 (2024). https://doi.org/10.1007/s10854-024-12091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12091-9

Navigation