Skip to main content
Log in

Molybdenum-doped BiVO4 thin films deposited through chemical spray pyrolysis for ammonia sensing at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly crystalline pure and Mo-doped (doping at different concentrations) BiVO4 thin films were deposited on glass substrates using the chemical spray pyrolysis technique. The doping concentration greatly influenced the film's crystallite size and surface roughness. The higher the dopant concentration, the smaller the crystallite size and the higher the surface roughness. All the films were sensitive to ammonia gas. Of all the films tested for gas sensing, the Bi1-0.05Mo0.05VO4 had a higher response to ammonia at room temperature. The introduction of dopant also reduced the bandgap of BiVO4. Peak shifts in Raman bands were also observed on doping with Mo. The lattice strain and dislocations imposed by the Mo dopant resulted in higher sensor response for the films at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Ravikumar, L. Thirumalaisamy, S. Madanagurusamy, K. Sivaperuman, Substrate temperature dependent ammonia gas sensing performance of zinc ferrite thin films prepared by spray pyrolysis Technique. J. Alloys Compd. 959, 170568 (2023). https://doi.org/10.1016/j.jallcom.2023.170568

    Article  CAS  Google Scholar 

  2. B. Yang, N.V. Myung, T.T. Tran, 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100271

    Article  Google Scholar 

  3. K. Sivaperuman, A. Thomas, R. Thangavel, L. Thirumalaisamy, S. Palanivel, S. Pitchaimuthu, N. Ahsan, Y. Okada, Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: a comprehensive review and future prospects. Prog. Mater. Sci. 142, 101222 (2024). https://doi.org/10.1016/j.pmatsci.2023.101222

    Article  CAS  Google Scholar 

  4. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H.E. Nilsson, W. Xiong, B. Xu, Y. Li, H.H. Radamson, Silicon nanowires for gas sensing: a review. Nanomaterials (2020). https://doi.org/10.3390/nano10112215

    Article  PubMed  PubMed Central  Google Scholar 

  5. O.V. Nkwachukwu, C. Muzenda, K.D. Jayeola, T.I. Sebokolodi, D.S. Sipuka, H. Wu, B.A. Koiki, M. Zhou, O.A. Arotiba, Characterisation and application of bismuth ferrite–bismuth vanadate p-n heterojunction in the photoelectrocatalytic degradation of ciprofloxacin in water. Electrochim. Acta (2023). https://doi.org/10.1016/j.electacta.2023.142385

    Article  Google Scholar 

  6. M. Yan, Y. Wu, Y. Yan, X. Yan, F. Zhu, Y. Hua, W. Shi, Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustain. Chem. Eng. 4(3), 757–766 (2016). https://doi.org/10.1021/acssuschemeng.5b00690

    Article  CAS  Google Scholar 

  7. B.O. Orimolade, B.N. Zwane, B.A. Koiki, L. Tshwenya, G.M. Peleyeju, N. Mabuba, M. Zhou, O.A. Arotiba, Solar photoelectrocatalytic degradation of ciprofloxacin at a FTO/BiVO4/MnO2 anode: kinetics, intermediate products and degradation pathway studies. J. Environ. Chem. Eng. (2020). https://doi.org/10.1016/j.jece.2019.103607

    Article  Google Scholar 

  8. S.S. Mali, G.R. Park, H. Kim, H.H. Kim, J.V. Patil, C.K. Hong, Synthesis of nanoporous Mo:BiVO4 thin film photoanodes using the ultrasonic spray technique for visible-light water splitting. Nanoscale Adv. 1(2), 799–806 (2019). https://doi.org/10.1039/c8na00209f

    Article  ADS  CAS  PubMed  Google Scholar 

  9. F. Scotognella, Bismuth vanadate layers alternated with nanoparticle-doped silicon dioxide layers for one-dimensional multilayer photonic crystals. Optik (Stuttg) (2023). https://doi.org/10.1016/j.ijleo.2023.171255

    Article  Google Scholar 

  10. H. Cai, L. Cheng, H. Chen, R. Dou, J. Chen, Y. Zhao, F. Li, Z. Fang, Facile phase control and photocatalytic performance of BiVO4 crystals for methylene blue degradation. Int. J. Environ. Res. Public Health (2023). https://doi.org/10.3390/ijerph20043093

    Article  PubMed  PubMed Central  Google Scholar 

  11. S.D. Dolić, D.J. Jovanović, K. Smits, B. Babić, M. Marinović-Cincović, S. Porobić, M.D. Dramićanin, A comparative study of photocatalytically active nanocrystalline tetragonal zyrcon-type and monoclinic scheelite-type bismuth vanadate. Ceram. Int. 44(15), 17953–17961 (2018). https://doi.org/10.1016/j.ceramint.2018.06.272

    Article  CAS  Google Scholar 

  12. G.P. Nagabhushana, G. Nagaraju, G.T. Chandrappa, Synthesis of bismuth vanadate: its application in h2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A Mater. 1(2), 388–394 (2013). https://doi.org/10.1039/c2ta00490a

    Article  CAS  Google Scholar 

  13. I.D. Sharp, J.K. Cooper, F.M. Toma, R. Buonsanti, Bismuth vanadate as a platform for accelerating discovery and development of complex transition-metal oxide photoanodes. ACS Energy Lett. (2017). https://doi.org/10.1021/acsenergylett.6b00586

    Article  Google Scholar 

  14. L. Wang, X. Shi, Y. Jia, H. Cheng, L. Wang, Q. Wang, Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2020.11.065

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Thomas, L. Thirumalaisamy, S. Madanagurusamy, K. Sivaperuman, Incompatibility of pure SnO2 thin films for room-temperature gas sensing application. ACS Omega (2023). https://doi.org/10.1021/acsomega.3c04038

    Article  PubMed  PubMed Central  Google Scholar 

  16. I. Eisele, T. Doll, M. Burgmair, Low power gas detection with FET sensors. Sens. Acutators B 78(1–3), 19–25 (2001)

    Article  CAS  Google Scholar 

  17. T.S. Sinclair, B.M. Hunter, J.R. Winkler, H.B. Gray, A.M. Müller, Factors affecting bismuth vanadate photoelectrochemical performance. Mater. Horiz. 2(3), 330–337 (2015). https://doi.org/10.1039/c4mh00156g

    Article  CAS  Google Scholar 

  18. L. Shi, S. Zhuo, M. Abulikemu, G. Mettela, T. Palaniselvam, S. Rasul, B. Tang, B. Yan, N.B. Saleh, P. Wang, Annealing temperature effects on photoelectrochemical performance of bismuth vanadate thin film photoelectrodes. RSC Adv. 8(51), 29179–29188 (2018). https://doi.org/10.1039/c8ra04887h

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Scherrer, Bestimmung Der Grösse Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  20. H. Ullah, A. Iqbal, M. Zakria, A. Mahmood, Structural and spectroscopic analysis of wurtzite (ZnO)1–x(Sb2O3)x composite semiconductor. Prog. Nat. Sc.: Mater. Int. 25(2), 131–136 (2015). https://doi.org/10.1016/j.pnsc.2015.02.003

    Article  CAS  Google Scholar 

  21. B. Manikandan, T. Endo, S. Kaneko, K.R. Murali, R. John, Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 29(11), 9474–9485 (2018). https://doi.org/10.1007/s10854-018-8981-8

    Article  CAS  Google Scholar 

  22. I. John Peter, E. Praveen, G. Vignesh, P. Nithiananthi, ZnO nanostructures with different morphology for enhanced photocatalytic activity. Mater. Res. Express (2017). https://doi.org/10.1088/2053-1591/aa9d5d

    Article  Google Scholar 

  23. E. Nurfani, A. Lailani, W.A.P. Kesuma, M.S. Anrokhi, G.T.M. Kadja, M. Rozana, UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis. Opt. Mater. (Amst) (2021). https://doi.org/10.1016/j.optmat.2020.110768

    Article  Google Scholar 

  24. A. Thomas, L. Thirumalaisamy, S. Madanagurusamy, K. Sivaperuman, Tuning the electrical and room-temperature gas sensing properties of transparent ZnO thin films through Mo doping. J. Mater. Sci. Mater. Electron. 34(36), 2294 (2023). https://doi.org/10.1007/s10854-023-11707-w

    Article  CAS  Google Scholar 

  25. V. Mursyalaat, V.I. Variani, W.O.S. Arsyad, M.Z. Firihu, The development of program for calculating the band gap energy of semiconductor material based on UV–Vis spectrum using Delphi 7.0. J. Phys. Conf. Ser. 2498(1), 012042 (2023). https://doi.org/10.1088/1742-6596/2498/1/012042

    Article  Google Scholar 

  26. K. Sankarasubramanian, P. Soundarrajan, T. Logu, K. Sethuraman, K. Ramamurthi, Enhancing resistive-type hydrogen gas sensing properties of cadmium oxide thin films by copper doping. New J. Chem. 42(2), 1457–1466 (2018). https://doi.org/10.1039/c7nj03095a

    Article  CAS  Google Scholar 

  27. X.H. Kong, H.X. Ji, R.D. Piner, H.F. Li, C.W. Magnuson, C. Tan, A. Ismach, H. Chou, R.S. Ruoff, Non-destructive and rapid evaluation of chemical vapor deposition graphene by dark field optical microscopy. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4816752

    Article  Google Scholar 

  28. M. del Pilar, S. Idelchik, N.M. Neu-Baker, A. Chandrasekaran, A.J. Friedman, M.D. Frame, S.A. Brenner, Relative quantitation of metal oxide nanoparticles in a cutaneous exposure model using enhanced darkfield microscopy and hyperspectral mapping. NanoImpact 3, 12–21 (2016). https://doi.org/10.1016/j.impact.2016.09.006

    Article  Google Scholar 

  29. S. Nallakumar, L. Thirumalaisamy, S. Madhanagurusamy, S. Kalainathan, M. Usha Rani, Inverse and distorted Co2 SnO4 cubic spinel thin films for dimethylamine detection at room temperature. New J. Chem. 47(23), 11110–11122 (2023). https://doi.org/10.1039/D3NJ01409F

    Article  CAS  Google Scholar 

  30. V. Mounasamy, G.K. Mani, K. Tsuchiya, S. Madanagurusamy, Nanoimprint assisted free standing porous vanadium oxide nanosheet based ammonia sensor. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.148271

    Article  Google Scholar 

  31. S.A.M. Chachuli, M.N. Hamidon, M. Ertugrul, M.S. Mamat, H. Jaafar, N.H. Shamsudin, TiO2/B2O3 thick film gas sensor for monitoring carbon monoxide at different operating temperatures. J. Phys. Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1432/1/012040

    Article  Google Scholar 

  32. Z.K. Heiba, N.M. Farag, A.M. El-Naggar, M. Abdellatief, A.M. Aldhafiri, M.B. Mohamed, Effect of Mo-doping on the structure, magnetic and optical characteristics of nano CuCo2O4. J. Market. Res. 10, 832–839 (2021). https://doi.org/10.1016/j.jmrt.2020.12.056

    Article  CAS  Google Scholar 

  33. M.A. Han, H.J. Kim, H.C. Lee, J.S. Park, H.N. Lee, Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 481, 133–137 (2019). https://doi.org/10.1016/J.APSUSC.2019.03.043

    Article  ADS  CAS  Google Scholar 

  34. Y. Wan, H. Li, J. Liu, F. Meng, Z. Jin, L. Kong, J. Liu, Sensitive detection of indoor air contaminants using a novel gas sensor based on coral-shaped tin dioxide nanostructures. Sens. Actuators B Chem. 165(1), 24–33 (2012). https://doi.org/10.1016/J.SNB.2012.01.065

    Article  CAS  Google Scholar 

  35. C.M. Hung, L. Van Duy, D.T.T. Le, H. Nguyen, N. Van Duy, N.D. Hoa, ZnO coral-like nanoplates decorated with Pd nanoparticles for enhanced VOC gas sensing. J. Sci. Adv. Mater. Devices 6(3), 453–461 (2021). https://doi.org/10.1016/J.JSAMD.2021.05.005

    Article  CAS  Google Scholar 

  36. M. Kumar, B. Singh, P. Yadav, V. Bhatt, M. Kumar, K. Singh, A.C. Abhyankar, A. Kumar, J.H. Yun, Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique. Ceram. Int. 43(4), 3562–3568 (2017). https://doi.org/10.1016/j.ceramint.2016.11.191

    Article  CAS  Google Scholar 

  37. B.K. Balachandar, T. Logu, R.H. Ramprasath, K. Sankarasubramanian, P. Soundarrajan, M. Sridharan, K. Ramamurthi, K. Sethuraman, Spray pyrolysis deposited CdO: Al films for trimethylamine sensing application. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2019.104753

    Article  Google Scholar 

  38. H.M. Ali, E.K. Shokr, Y.A. Taya, S.A. Elkot, M.F. Hasaneen, W.S. Mohamed, Amorphous molybdenum trioxide thin films for gas sensing applications. Sens. Actuators A Phys. (2022). https://doi.org/10.1016/j.sna.2021.113355

    Article  Google Scholar 

  39. G.K. Mani, J.B.B. Rayappan, Novel and facile synthesis of randomly interconnected ZnO nanoplatelets using spray pyrolysis and their room temperature sensing characteristics. Sens. Actuators B Chem. 198, 125–133 (2014). https://doi.org/10.1016/j.snb.2014.02.101

    Article  CAS  Google Scholar 

  40. V. Mounasamy, G.K. Mani, D. Ponnusamy, K. Tsuchiya, A.K. Prasad, S. Madanagurusamy, Template-free synthesis of vanadium sesquioxide (V2O3) nanosheets and their room-temperature sensing performance. J. Mater. Chem. A Mater. 6(15), 6402–6413 (2018). https://doi.org/10.1039/c7ta10159g

    Article  CAS  Google Scholar 

  41. A. Thomas, L. Thirumalaisamy, S. Madanagurusamy, K. Sivaperuman, Switching the selectivity of ZnO thin films for ultra-sensitive acetaldehyde gas sensors through Co doping. Sens. Actuators B Chem. 401, 135043 (2024). https://doi.org/10.1016/j.snb.2023.135043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Goran Majkic and the University of Houston Division of Research High Priority Area Research Large Equipment Grant I0503304 for establishing a state-of-the-art 2D-XRD facility used in this study. We greatly appreciated the kind help of Dr. Wayne Fei and Dr. Shawn Liu from Houston Electron Microscopy (HoustonEM.com) for guiding and offering Vasundhra the use of their state-of-the-art 3-D Digital Microscope and Scanning Electron Microscope.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VA, SK. Formal analysis: VA, SK. Investigation: VA, SK. Methodology: VA. Resources: SK. Supervision: SK. Validation: SK. Writing—original draft: VA. Writing—review & editing: VA, SK.

Corresponding author

Correspondence to Sivaperuman Kalainathan.

Ethics declarations

Conflict of interest

The authors declare that there are no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulazi, V., Kalainathan, S. Molybdenum-doped BiVO4 thin films deposited through chemical spray pyrolysis for ammonia sensing at room temperature. J Mater Sci: Mater Electron 35, 347 (2024). https://doi.org/10.1007/s10854-024-12088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12088-4

Navigation