Skip to main content
Log in

Improvement of optical properties and memory effect in ferroelectric liquid crystal by incorporating core/shell CoFe2O4/ZnO nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we report incorporation of spinel ferrite CoFe2O4/ZnO (ZCOF) core/shell nanocrystals (NCs) in ferroelectric liquid crystals (FLC) resulting better optical properties. The optical properties of FLC were studied using polarizing optical microscopy (POM) and photoluminescence (PL) measurements. The POM texture analysis reveals improved molecular alignment of FLC by presence of ZCOF NCs. PL emission peak show about 1.4 times improvement of area under curve ratio as a result of enhanced FLC molecular ordering. The improved emission properties of FLC were result of reduced defect state emissions by presence of ZCOF NCs. The optical memory in FLC (20 s) as well as in ZCOF-incorporated FLC (2 min) is also reported using POM texture analysis with aid of ImageJ software. Memory measurements reveal winding and unwinding of helix of FLC by external electric field takes place with discrete steps as a result of smectic subphases emergence. Study of applying staircase potential to FLC material shows critical electric field of helix unwinding is 1 kV/cm. In summary, presence of ZCOF NCs in FLC would give better contrast, better brightness, and optical memory which might be useful for future FLC-based display and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the finding of this study are available in the supplementary materials of this article.

References

  1. P. Tripathi, D. Singh, T. Yadav et al., Opt. Mater. 135, 113298 (2023)

    Article  CAS  Google Scholar 

  2. S.T. Lagerwall, Liq. Cryst. Today 6, 5 (1996)

    Article  Google Scholar 

  3. S. Kobayashi, Y. Iimura, N. Yoshida, in Polymer surfaces and interfaces: characterization, modification and application. ed. by K.L. Mittal, K.W. Lee (CRC Press, London, 2023), p.263

    Chapter  Google Scholar 

  4. P. Priscilla, P. Malik, A. Kumar, et. al. Crit. Rev. Solid State Mater. Sci. 47, 1 (2022)

    Article  Google Scholar 

  5. Q. Li, Liquid crystals beyond displays: chemistry, physics, and applications (Wiley, New York, 2012), pp.111–157

    Book  Google Scholar 

  6. N. Pote, S. Doke, A. Lohar et al., Liq. Cryst. 50, 809 (2023)

    Article  CAS  Google Scholar 

  7. R. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. Lett. 36, 69 (1975)

    Article  Google Scholar 

  8. N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)

    Article  CAS  ADS  Google Scholar 

  9. V. Kumar, A. Kumar, A.M. Biradar et al., Liq. Cryst. 41, 1719 (2014)

    Article  CAS  Google Scholar 

  10. S.K. Gupta, D. Budaszewski, D.P. Singh, Eur. Phys. J. Spec. Top. 231, 673 (2022)

    Article  CAS  Google Scholar 

  11. S. Pandey, D.P. Singh, K. Agrahari et al., J. Mol. Liq. 237, 71 (2017)

    Article  CAS  Google Scholar 

  12. B.K. Urbanc, B. Zeks, Phys. Rev. E. 52, 3892 (1995)

    Article  ADS  Google Scholar 

  13. G. Heppke, A. Jakli, S. Rauch, H. Sawade, Phys. Rev. E. 60, 5575 (1999)

    Article  CAS  ADS  Google Scholar 

  14. S. Kaur, A. Thakur, S. Bawa, A. Biradar, Appl. Phys. Lett. 88, 122905 (2006)

    Article  ADS  Google Scholar 

  15. J. Prakash, A. Choudhary, A. Kumar et al., Appl. Phys. Lett. 93, 112904 (2008)

    Article  ADS  Google Scholar 

  16. A. Emelyanenko, Phys. Rev. E. 82, 031710 (2010)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  17. A. Kumar, J. Prakash, M.T. Khan et al., Appl. Phys. Lett. 97, 163113 (2010)

    Article  ADS  Google Scholar 

  18. A. Kumar, A. Biradar, Phys. Rev. E. 83, 041708 (2011)

    Article  CAS  ADS  Google Scholar 

  19. P. Malik, A. Chaudhary, R. Mehra et al., Mol. Cryst. Liq. Cryst. 541, 243 (2011)

    Article  CAS  ADS  Google Scholar 

  20. M. Rjili, A. Gharbi, T. Othman, J. Marcerou, Phys. Rev. E. 89, 022507 (2014)

    Article  CAS  Google Scholar 

  21. S. Pandey, T. Vimal, D.P. Singh et al., Liq. Cryst. 41, 1811 (2014)

    Article  CAS  Google Scholar 

  22. S. Pandey, T. Vimal, D.P. Singh et al., J. Mol. Liq. 211, 157 (2015)

    Article  CAS  Google Scholar 

  23. D. Singh, S. Pandey, S. Gupta et al., J. Lumin. 173, 250 (2016)

    Article  CAS  Google Scholar 

  24. S. Doke, K. Sonawane, V.R. Reddy et al., Liq. Cryst. 45, 1518 (2018)

    Article  CAS  Google Scholar 

  25. S. Doke, E. Martinez-Teran, A.A. El-Gendy et al., J. Mol. Liq. 288, 110836 (2019)

    Article  CAS  Google Scholar 

  26. S. Doke, P. Ganguly, S. Mahamuni, Liq. Cryst. 47, 2305 (2020)

    Article  CAS  Google Scholar 

  27. N. Pote, S. Doke, M.A. Haque et al., Liq. Cryst. (2023). https://doi.org/10.1080/02678292.2023.2276841

    Article  Google Scholar 

  28. E. Suharyadi, A. Muzakki, N.I. Istiqomah et al., J. Solid State Sci. Technol. 11, 023004 (2022)

    Article  ADS  Google Scholar 

  29. M. Ristic, S. Krehula, M. Reissner et al., J. Mol. Struct. 1140, 32 (2017)

    Article  CAS  ADS  Google Scholar 

  30. G. Lavorato, E. Jr Lima, M.V. Mansilla, et. al. J. Phys. Chem. C 122, 3047 (2018)

    Article  CAS  Google Scholar 

  31. E. Suharyadi, A. Muzakki, A. Nofrianti et al., Mater. Res. Express. 7, 085013 (2020)

    Article  CAS  ADS  Google Scholar 

  32. P. Goel, G. Singh, R.P. Pant, A.M. Biradar, Liq. Cryst. 39, 927 (2012)

    Article  CAS  Google Scholar 

  33. P. Khushboo, P. Sharma, K. Malik, Liq. Cryst. 43, 1671 (2016)

    Article  CAS  Google Scholar 

  34. S. Bose, A. Sinha, S. Munjal, S. Ghosh, Liq. Cryst. (2023). https://doi.org/10.1080/02678292.2023.2276389

    Article  Google Scholar 

  35. S. Kim, B. Fisher, H.J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. V. Jadhav, P. Chikode, G. Nikam, S. Sabale, Mater. Today Proc. 3, 5121 (2016)

    Google Scholar 

  37. B.R. Thombare, D.S. Gavhane, G.S. Lole et al., Phys. E Low Dimen. Syst. Nanostruct. 121, 114131 (2020)

    Article  CAS  Google Scholar 

  38. J.C.B. Huarac, S.P. Singh, M.S. Tomar et al., MRS Proc. 1257, 1257 (2010). (O06)

    Google Scholar 

  39. W. Chiu, P. Khiew, M. Cloke et al., J. Phys. Chem. C 114, 8212 (2010)

    Article  CAS  Google Scholar 

  40. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  41. A. Kumar, J. Prakash, D. Mehta, A. Biradar, W. Haase, Appl. Phys. Lett. 95, 023117 (2009)

    Article  ADS  Google Scholar 

  42. T. Joshi, A. Kumar, J. Prakash, A. Biradar, Appl. Phys. Lett. 96, 253109 (2010)

    Article  ADS  Google Scholar 

  43. S. Doke, P. Ganguly, S. Mahamuni, Liq. Cryst. 47, 309 (2020)

    Article  CAS  Google Scholar 

  44. A. Kumar, G. Singh, T. Joshi, A.M. Biradar, J. Mol. Liq. 315, 113776 (2020)

    Article  CAS  Google Scholar 

  45. U. Singh, M. Pandey, R. Dhar, R. Verma, S. Kumar, Liq. Cryst. 43, 1075 (2016)

    Article  CAS  Google Scholar 

  46. G. Kaur, P. Kumar, A.K. Singh, D. Jayoti, P. Malik, Liq. Cryst. 47, 2194 (2020)

    Article  CAS  Google Scholar 

  47. N. Pote, C. Phadnis, K. Sonawane, V. Sudarsan, S. Mahamuni, Solid State Commun. 192, 6 (2014)

    Article  CAS  ADS  Google Scholar 

  48. Y. Nandan, M.S. Mehata, Sci. Rep. 9, 2 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  49. D. Chen, F. Zhao, H. Qi, M. Rutherford, X. Peng, Chem. Mater. 22, 1437 (2010)

    Article  CAS  Google Scholar 

  50. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000)

    Article  CAS  ADS  Google Scholar 

  51. A. Sashchiuk, D. Yanover, A. Rubin-Brusilovski et al., Nanoscale. 5, 7724 (2013)

    Article  CAS  PubMed  ADS  Google Scholar 

  52. D. Singh, S. Pandey, R. Manohar, S. Kumar, G. Pujar, S. Inamdar, J. Lumin. 190, 161 (2017)

    Article  CAS  Google Scholar 

  53. F.P. Pandey, A. Rastogi, S. Singh, Opt. Mater. 105, 109849 (2020)

    Article  CAS  Google Scholar 

  54. F.P. Pandey, S. Singh, J. Mol. Liq. 315, 113820 (2020)

    Article  CAS  Google Scholar 

  55. A. Kumar, J. Prakash, A.D. Deshmukh et al., Appl. Phys. Lett. 100, 134101 (2012)

    Article  ADS  Google Scholar 

  56. P. Ganguly, A. Kumar, S. Tripathi, D. Haranath, A. Biradar, Appl. Phys. Lett. 102, 222902 (2013)

    Article  ADS  Google Scholar 

  57. T. Vimal, G. Pujar, K. Agrahari, S.R. Inamdar, R. Manohar, Phys. Rev. E. 103, 022708 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  58. B. Kutnjak-Urbanc, B. Zeks, Phys. Rev. E. 51, 1569 (1995)

    Article  CAS  ADS  Google Scholar 

  59. N.G. Migranov, A.A. Kudreyko, Chin. Phys. B 24, 076101 (2015)

    Article  Google Scholar 

  60. S. Kaur, S. Singh, A. Biradar, A. Choudhary, K. Sreenivas, Appl. Phys. Lett. 91, 023120 (2007)

    Article  ADS  Google Scholar 

  61. A. Chandran, J. Prakash, P. Ganguly, A.M. Biradar, RSC Adv. 3, 17166 (2013)

    Article  CAS  ADS  Google Scholar 

  62. A. Chandran, J. Prakash, J. Gangwar et al., RSC Adv. 6, 53873 (2016)

    Article  CAS  ADS  Google Scholar 

  63. P. Dolganov, V. Zhilin, Phys. Rev. E. 87, 062505 (2013)

    Article  CAS  ADS  Google Scholar 

  64. R. Blinc, B. Zeks, Phys. Rev. A 18, 740 (1978)

    Article  CAS  ADS  Google Scholar 

  65. J.K. Song, U. Manna, J. Vij, EPL 82, 26003 (2008)

    Article  ADS  Google Scholar 

  66. P.V. Dolganov, JETP Lett. 100, 59 (2014)

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The authors are thankful to Dr. Shailaja Mahamuni and Dr. N. B. Chaure from Department of Physics, S. P. Pune University, India for their fruitful discussions and generous help in thickness measurement of LC sample cells using dielectric measurements. Authors are thankful to Dr Sachin Desarada for assistance to perform Reitveld refinement of the X-ray diffraction (XRD) data. The authors would like to acknowledge XRD and Polarizing Optical Microscopy (POM) Characterization facility at Department of Physics, S. P. Pune University, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors were contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NP and SH. The first draft of the manuscript was written by NP and all authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Prasun Ganguly or Arun Banpurkar.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1639.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pote, N., Hinge, S., Ganguly, P. et al. Improvement of optical properties and memory effect in ferroelectric liquid crystal by incorporating core/shell CoFe2O4/ZnO nanocrystals. J Mater Sci: Mater Electron 35, 320 (2024). https://doi.org/10.1007/s10854-024-12039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12039-z

Navigation