Skip to main content
Log in

Preparation and characterization of reduced graphene oxide grafted by alkyl chains with different lengths for application in dielectric polymer nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main challenges in polymer composites containing conductive fillers such as reduced graphene oxide (rGO) nano-platelets are proper dispersion of these particles and reduced dissipation of energy due to electrical loss in the bulk of composites. Surface modification is an effective method to address these challenges. However, the proper structure and adequate lengths of grafted alkyl chains and the corresponding changes in electrical properties of the particles before adding to the polymer matrix with desired properties need to be further investigated. In this study, chemical modification of rGO platelets with short and long alkyl chains was carried out to design modified particles (mrGO) with controlled electrical conductivity and dielectric permittivity before incorporating them into a polyacrylic matrix. Alkyl-silanes with chain lengths of 3 and 16 carbon atoms as short chains and poly (butyl acrylate) (PBA) as long chains were grafted on the rGO surface. The successful modification of rGO was evaluated by using Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Electrical conductivity for mrGOs decreased as the chain length increased, especially for PBA chains, due to a significant reduction in the long-range movement of electrons. Dielectric relaxation spectra of rGOs modified by short chains followed the Drude model, whereas the Debye-type dielectric relaxation was observed for the matrix-free polymer-grafted rGO nanocomposites. Finally, the dielectric properties of acrylic copolymer composites containing 0.5 wt% of mrGOs were examined. Comparing three types of particles, incorporating the polymer-grafted rGO into the polymer matrix resulted in a 47% increase in dielectric permittivity along with a minor increase in dielectric loss, which was less significant in other composites. These composites can be used as high-k materials for energy storage and conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Data availability

All the relevant data supporting the findings of this study are available within the manuscript.

References

  1. Y. Chen, S. Zhang, X. Liu, Q. Pei, J. Qian, Q. Zhuang, Z. Han, Preparation of solution-processable reduced graphene oxide/polybenzoxazole nanocomposites with improved dielectric properties. Macromolecules. 48(2), 365–372 (2015)

    ADS  CAS  Google Scholar 

  2. M. Mrlík, M. Ilčíková, T. Plachý, V. Pavlínek, Z. Špitalský, J. Mosnáček, Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 283, 717–720 (2016)

    Google Scholar 

  3. R. Hashemi, G.J. Weng, A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon. 96, 474–490 (2016)

    CAS  Google Scholar 

  4. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22(9), 267 (2020)

    ADS  CAS  Google Scholar 

  5. X. Zhao, E. Jiaqiang, G. Wu, Y. Deng, D. Han, B. Zhang, Z. Zhang, A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy. Conv. Manag. 184, 581–599 (2019)

    CAS  Google Scholar 

  6. A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, Application of graphene in energy storage device–A review. Renew. Sustain. Energy Rev. 135, 110026 (2021)

    CAS  Google Scholar 

  7. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis: An. International Journal. Devoted to Fundamental and Practical Aspects of Electroanalysis. 22(10), 1027–1036 (2010)

    CAS  Google Scholar 

  8. B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol. 2(1), 54–75 (2012)

    CAS  Google Scholar 

  9. X. Xia, G.J. Weng, J. Xiao, W. Wen, Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams. Mater. Today Commun. 22, 100853 (2020)

    CAS  Google Scholar 

  10. T. Chen, B. Liu, A combination of silicone dielectric elastomer and graphene nanosheets for the preparation of bending flexible transducers. Mater. Lett. 211, 69–73 (2018)

    CAS  Google Scholar 

  11. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098–7105 (2009)

    CAS  Google Scholar 

  12. Y.J. Wan, W.H. Yang, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol. 122, 27–35 (2016)

    CAS  Google Scholar 

  13. S. He, Y. Qian, K. Liu, C.W. Macosko, A. Stein, Modified-graphene-oxide-containing styrene masterbatches for thermosets. Ind. Eng. Chem. Res. 56(40), 11443–11450 (2017)

    CAS  Google Scholar 

  14. Y. Li, P. Tao, A. Viswanath, B.C. Benicewicz, L.S. Schadler, Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir. 29(4), 1211–1220 (2013)

    PubMed  Google Scholar 

  15. M. Sadroddini, M. Razzaghi-Kashani, Electromechanical performance of polydimethylsiloxane containing reduced graphene oxide grafted by long-chain alkyl silane. J. Mater. Sci.: Mater. Electron. 31(21), 18844–18857 (2020)

    Google Scholar 

  16. J.F. Moll, P. Akcora, A. Rungta, S. Gong, R.H. Colby, B.C. Benicewicz, S.K. Kumar, Mechanical reinforcement in Polymer melts filled with polymer grafted nanoparticles. Macromolecules. 44(18), 7473–7477 (2011)

    ADS  CAS  Google Scholar 

  17. S.K. Kumar, N. Jouault, B. Benicewicz, T. Neely, Nanocomposites with polymer grafted nanoparticles. Macromolecules. 46(9), 3199–3214 (2013)

    ADS  CAS  Google Scholar 

  18. C. Kang, R.M. Crockett, N.D. Spencer, Molecular-weight determination of polymer brushes generated by SI-ATRP on flat surfaces. Macromolecules. 47(1), 269–275 (2014)

    ADS  CAS  Google Scholar 

  19. L. Noein, V. Haddadi-Asl, M. Salami-Kalajahi, Grafting of pH-sensitive poly (N, N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto HNTS via surface-initiated atom transfer radical polymerization for controllable drug release. Int. J. Polym. Mater. Polym. Biomaterials. 66(3), 123–131 (2017)

    CAS  Google Scholar 

  20. X. Han, S. Chen, X. Lv, H. Luo, D. Zhang, C.R. Bowen, Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly (vinylidene fluoride–trifluoroethylene–chlorotrifluoroethylene) nanocomposites. Phys. Chem. Chem. Phys. 20(4), 2826–2837 (2018)

    CAS  PubMed  Google Scholar 

  21. X.H. Gao, J.W. Wang, D.N. Liu, X.Z. Wang, H.Q. Wang, L. Wei, H. Ren, Improving the dielectric properties of acrylic resin elastomer with reduced graphene oxide decorated with polystyrene. Eur. Polymer J. 150, 110418 (2021)

    CAS  Google Scholar 

  22. Z. Wang, W. Xue, Y. Yang, Y. Li, S. Wang, Y. Zhan, W. Li, J. Hao, J.W. Zha, C. Liu, Y. Cao, PMMA brush-modified graphene for flexible energy storage PVDF dielectric films. Compos. Commun. 37, 101411 (2023)

    Google Scholar 

  23. J.M. Thomassin, M. Trifkovic, W. Alkarmo, C. Detrembleur, C. Jérôme, C. Macosko, Poly (methyl methacrylate)/graphene oxide nanocomposites by a precipitation polymerization process and their dielectric and rheological characterization. Macromolecules. 47(6), 2149–2155 (2014)

    ADS  CAS  Google Scholar 

  24. T. Chen, J. Qiu, K. Zhu, J. Li, Electro-mechanical performance of polyurethane dielectric elastomer flexible micro-actuator composite modified with titanium dioxide-graphene hybrid fillers. Mater. Design. 90, 1069–1076 (2016)

    CAS  Google Scholar 

  25. X. Xia, Y. Wang, Z. Zhong, G.J. Weng, A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon. 111, 221–230 (2017)

    CAS  Google Scholar 

  26. M. Ruan, D. Yang, W. Guo, L. Zhang, Y. Wu, S. Li, Mussel-inspired synthesis of barium titanate@ poly (dopamine)@ graphene oxide multilayer core-shell hybrids for high-performance dielectric elastomer actuator. Mater. Lett. 219, 109–113 (2018)

    CAS  Google Scholar 

  27. X. Xia, Z. Zhong, G.J. Weng, Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mech. Mater. 109, 42–50 (2017)

    Google Scholar 

  28. H. Ye, W. Liu, Y. Chen, J. Huang, W. Chen, Z. Chen, L. Xu, J. Zhang, Enhanced polarization in a Graphene/Poly (vinylidene fluoride-co-chlorotrifluoroethylene) nanocomposite with a Hyperbranched polyethylene-grafted poly (methyl methacrylate) interface. Ind. Eng. Chem. Res. 59(21), 9969–9980 (2020)

    CAS  Google Scholar 

  29. W. Tong, Y. Zhang, Q. Zhang, X. Luan, Y. Duan, S. Pan, F. Lv, Q. An, Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon. 94, 590–598 (2015)

    CAS  Google Scholar 

  30. H. Luo, Z. Wu, C. Chen, C. Ma, K. Zhou, D. Zhang, Methoxypolyethylene glycol functionalized carbon nanotube composites with high permittivity and low dielectric loss. Compos. Part A: Appl. Sci. Manufac. 86, 57–65 (2016)

    CAS  Google Scholar 

  31. L. Liu, F. Lv, Y. Zhang, P. Li, W. Tong, L. Ding, G. Zhang, Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO2@ GO hybrids. Compos. Part A: Appl. Sci. Manufac. 99, 41–47 (2017)

    CAS  Google Scholar 

  32. J. Ren, D. Yu, L. Feng, G. Wang, G. Lv, Nanocable-structured polymer/carbon nanotube composite with low dielectric loss and high impedance. Compos. Part A: Appl. Sci. Manufac. 98, 66–75 (2017)

    CAS  Google Scholar 

  33. M. Panahi-Sarmad, M. Razzaghi-Kashani, Actuation behavior of PDMS dielectric elastomer composites containing optimized graphene oxide. Smart Mater. Struct. 27(8), 085021 (2018)

    ADS  Google Scholar 

  34. M. Panahi-Sarmad, E. Chehrazi, M. Noroozi, M. Raef, M. Razzaghi-Kashani, M.A. Haghighat Baian, Tuning the surface chemistry of graphene oxide for enhanced dielectric and actuated performance of silicone rubber composites. ACS Appl. Electron. Mater. 1(2), 198–209 (2019)

    CAS  Google Scholar 

  35. T. Zhang, W. Huang, N. Zhang, T. Huang, J. Yang, Y. Wang, Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur. Polymer J. 94, 196–207 (2017)

    CAS  Google Scholar 

  36. M. Sadroddini, M. Razzaghi-Kashani, Silica-decorated reduced graphene oxide (SiO2@ rGO) as hybrid fillers for enhanced dielectric and actuation behavior of polydimethylsiloxane composites. Smart Mater. Struct. 29(1), 015028 (2019)

    ADS  Google Scholar 

  37. Y. Li, X. Bi, S. Wang, Y. Zhan, H.Y. Liu, Y.W. Mai, C. Liao, Z. Lu, Y. Liao, Core-shell structured polyethylene glycol functionalized graphene for energy-storage polymer dielectrics: combined mechanical and dielectric performances. Compos. Sci. Technol. 199, 108341 (2020)

    CAS  Google Scholar 

  38. T. Lalire, B. Otazaghine, A. Taguet, C. Longuet, Correlation between multiple chemical modification strategies on graphene or graphite and physical/electrical properties. FlatChem. 33, 100376 (2022)

    CAS  Google Scholar 

  39. X. Zhi, Y. Mao, Z. Yu, S. Wen, Y. Li, L. Zhang, T.W. Chan, L. Liu, γ-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. Compos. Part A: Appl. Sci. Manufac. 76, 194–202 (2015)

    CAS  Google Scholar 

  40. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS nano. 4(8), 4806–4814 (2010)

    CAS  PubMed  Google Scholar 

  41. Y.J. Wan, L.C. Tang, L.X. Gong, D. Yan, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon. 69, 467–480 (2014)

    CAS  Google Scholar 

  42. F. Papiya, S. Das, P. Pattanayak, P.P. Kundu, The fabrication of silane modified graphene oxide supported Ni–Co bimetallic electrocatalysts: a catalytic system for superior oxygen reduction in microbial fuel cells. Int. J. Hydrog. Energy. 44(47), 25874–25893 (2019)

    CAS  Google Scholar 

  43. C. Xue, H. Gao, Y. Hu, G. Hu, Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale. Compos. Struct. 228, 111365 (2019)

    Google Scholar 

  44. Z. Daşdelen, A. Özcan, Synthesis of a nanocomposite based on the modification of graphene oxide with cysteamine-capped gold nanoparticles and investigation of its use as anode catalyst in ethylene glycol fuel cells. Fuel. 325, 124959 (2022)

    Google Scholar 

  45. M. Lotfi, H. Yari, M.G. Sari, A. Azizi, Fabrication of a highly hard yet tough epoxy nanocomposite coating by incorporating graphene oxide nanosheets dually modified with amino silane coupling agent and hyperbranched polyester-amide. Prog. Org. Coat. 162, 106570 (2022)

    CAS  Google Scholar 

  46. P.N. Diagboya, H.K. Mmako, E.D. Dikio, F.M. Mtunzi, Synthesis of amine and thiol dual functionalized graphene oxide for aqueous sequestration of lead. J. Environ. Chem. Eng. 7(6), 103461 (2019)

    CAS  Google Scholar 

  47. J. Huang, S. Ding, W. Xiao, Y. Peng, S. Deng, N. Zhang, 3-Aminopropyl-triethoxysilane functionalized graphene oxide: a highly efficient and recyclable catalyst for Knoevenagel condensation. Catal. Lett. 145, 1000–1007 (2015)

    CAS  Google Scholar 

  48. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, (2019, September). Crystal structure and optical properties of 1D-bi based organic-inorganic hybrid perovskite. In IOP Conference Series: Materials Science and Engineering (Vol. 610, No. 1, p. 012063). IOP Publishing

  49. S.K. Abdel-Aal, S. Ahmed, W.M. Abdel-Rahman, M. Gamal, H.S. Abdel-Kader, F. Ayoub, Ashraf, M.F. El-Sherif, S. Kandeel, E.E. Bozhko, Yakimov, E.B. Yakimov, Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH3CH2CH (NH3) CH2] BiCl5. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater. 75(5), 880–886 (2019)

    ADS  CAS  Google Scholar 

  50. L. Qin, J. Qiu, M. Liu, S. Ding, L. Shao, S. Lü, G. Zhang, Y. Zhao, X. Fu, Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem. Eng. J. 166(2), 772–778 (2011)

    CAS  Google Scholar 

  51. S.H. Park, T.H. Lee, Y.I. Park, S.M. Noh, J.C. Kim, Effect of the n-butyl acrylate/2-ethylhexyl acrylate weight ratio on the performances of waterborne core–shell PSAs. J. Ind. Eng. Chem. 53, 111–118 (2017)

    Google Scholar 

  52. C.Y. Wang, W.J. Zeng, T.T. Jiang, X. Chen, X.L. Zhang, Incorporating attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment. Sep. Purif. Technol. 214, 21–30 (2019)

    CAS  Google Scholar 

  53. H. Aguilar-Bolados, M. Yazdani-Pedram, E. Quinteros-Jara, Q. Cuenca-Bracamonte, R. Quijada, J. Carretero-González, F. Avilés, M.A. Lopez-Manchado, R. Verdejo, Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polym. Test. 93, 106986 (2021)

    CAS  Google Scholar 

  54. J. Li, Y. Liu, S. Qian, Z. Geng, Q. Pan, L. Ye, L. Zhang, J. Bao, Y. He, B. Zhu, Reactive graphene by one-pot grafting toward tough and fire-retardant thermoset nanocomposites. Surf. Interfaces. 34, 102311 (2022)

    CAS  Google Scholar 

  55. J. Fan, J. Yang, L. Wang, H. Li, J. Tian, J. Ye, Y. Zhao, Enhanced mechanical properties of epoxy nanocomposites with mildly surface-functionalized graphene oxide by tuned amine species. Appl. Surf. Sci. 558, 149964 (2021)

    CAS  Google Scholar 

  56. X. Liang, X. Li, Y. Tang, X. Zhang, W. Wei, X. Liu, Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification. J. Colloid Interface Sci. 611, 105–117 (2022)

    ADS  CAS  PubMed  Google Scholar 

  57. M. Ilčíková, M. Mrlík, Z. Špitálský, M. Mičušík, K. Csomorová, V. Sasinková, A. Kleinová, J. Mosnáček, A tertiary amine in two competitive processes: reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 5(5), 3370–3376 (2015)

    ADS  Google Scholar 

  58. A. Kumar Das, R. Dharmana, A. Mukherjee, K. Baba, R. Hatada, K. Meikap, A, Influence of functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film. J. Appl. Phys. 123(14), 145105 (2018)

    ADS  Google Scholar 

  59. S.K. Abdel-Aal, A.S. Abdel-Rahman, Fascinating physical properties of 2D hybrid perovskite [(NH 3)(CH 2) 7 (NH 3)] CuCl x br 4 – x, x = 0, 2 and 4. J. Electron. Mater. 48, 1686–1693 (2019)

    ADS  CAS  Google Scholar 

  60. P.Q. Mantas, Dielectric response of materials: extension to the Debye model. J. Eur. Ceram. Soc. 19(12), 2079–2086 (1999)

    CAS  Google Scholar 

  61. X. Sun, C. Cheng, T. Wang, Y. Liu, R. Fan, Negative permittivity behavior in percolative molybdenum/alumina composites. Ceram. Int. 45(13), 16618–16624 (2019)

    CAS  Google Scholar 

  62. D. Estevez, F. Qin, Y. Luo, L. Quan, Y.W. Mai, L. Panina, H.X. Peng, Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos. Sci. Technol. 171, 206–217 (2019)

    CAS  Google Scholar 

  63. M. Liu, H. Wu, Y. Wu, P. Xie, R.A. Pashameah, H.M. Abo-Dief, S.M. El-Bahy, Y. Wei, G. Li, W. Li, G. Liang, The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv. Compos. Hybrid Mater. 5(3), 2021–2030 (2022)

    CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by LN, SJ and FK. The first draft of the manuscript was written by LN. MR-K contributed to supervision, conceptualization, methodology, investigation, validation, resources, writing review and editing.

Corresponding author

Correspondence to Mehdi Razzaghi-Kashani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noein, L., Jalali, S., Khakbaz, F. et al. Preparation and characterization of reduced graphene oxide grafted by alkyl chains with different lengths for application in dielectric polymer nanocomposites. J Mater Sci: Mater Electron 35, 197 (2024). https://doi.org/10.1007/s10854-024-11976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11976-z

Navigation