Skip to main content
Log in

Facile synthesis of photosensitive iron oxide nanorods and their application as UV photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Iron oxide nanorods (NRs) possess excellent optoelectronic properties leading to potential UV photodetection and other sensing applications. A wet-chemical synthesis method was carried out to synthesize iron oxide NRs, which were then investigated for their physical and chemical properties. X-ray Diffraction (XRD) confirmed the formation of γ-FeOOH/γ-Fe2O3/α-FeOOH mixed phases of iron oxide. Transmission electron Microscope (TEM) analysis confirmed an average NR length of ∼ 62 ± 23 nm and average diameter of ∼ 10 ± 3 nm. Magnetic Force Microscopic (MFM) studies confirm the magnetic nature of the sample with magnetization degree of ∼ 76 ± 22°. The bandgap of the as-synthesized NRs was estimated to be 2.06 eV by Ultraviolet-visible (UV) spectroscopy. A thin film of the as-synthesized samples was cast on the screen-printed electrodes for measuring the photocurrent in dark and UV illumination at 365 nm wavelength. The NRs exhibited a quick UV photoresponse and recovery times of ∼ 8 ± 3 s at the minimal applied bias of 0.5 V. The synthesis resulted in iron oxide nanorods with impressive response and recovery times. As compared to existing literature reports, this is the first time undoped and multi-phase oxides of iron have been used for UV photodetection application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.R. Tak, V. Gupta, A.K. Kapoor, Y.-H. Chu, R. Singh, ACS Appl. Electron. Mater. 1, 2463 (2019)

    Article  Google Scholar 

  2. Y.-L. Chu, S.-J. Young, L.-W. Ji, I.-T. Tang, T.-T. Chu, Sensors. 20, 3861 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. Suganthi, S. Rani, J. Mater. Res. 38, 1919 (2023)

    Article  ADS  CAS  Google Scholar 

  4. H. Bae, A. Charnas, X. Sun, J. Noh, M. Si, W. Chung, G. Qiu, X. Lyu, S. Alghamdi, H. Wang, ACS Omega. 4, 20756 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. B.R. Tak, S. Kumar, D. Wang, X. Li, H. Sun, R. Singh, J. Phys. D: Appl. Phys. 54, 453002 (2021)

  6. Y. El Mendili, J.-F. Bardeau, N. Randrianantoandro, J.-M. Greneche, F. Grasset, Sci. Technol. Adv. Mater. 17, 597 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.C. Souza, R.A. Ribeiro, L. c., G. da Trindade, R.C. Oliveira, L.D. Costa, M.C. de Oliveira, S.R. De Lazaro, J.R. Sambrano, C.R. Mendonça, L. De Boni, ACS Omega. 6, 28049 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Sakurai, K. Tomita, K. Hashimoto, H. Yashiro, S.-. Ohkoshi, J. Phys. Chem. C 112, 20212 (2008)

    Article  CAS  Google Scholar 

  9. N.M.S. Kaawash, D.I. Halge, V.N. Narwade, P.S. Alegaonkar, K.A. Bogle, Mater. Chem. Phys. 300, 127546 (2023)

    Article  CAS  Google Scholar 

  10. R.M. Cornell, U. Schwertmann, The iron oxides (Wiley, Hoboken, 1996)

    Google Scholar 

  11. S. Liu, J. Wu, P. Yu, Q. Ding, Z. Zhou, H. Li, C.-. Lai, Y.-L. Chueh, Z.M. Wang, Nanoscale Res. Lett. 9, 1 (2014)

    Article  ADS  Google Scholar 

  12. Y.-Y. Zheng, Q. Sun, Y.-H. Duan, J. Zhai, L.-L. Zhang, J.-X. Wang, Mater. Chem. Phys. 252, 123431 (2020)

    Article  CAS  Google Scholar 

  13. A.D. Nusseif, A.M. Abdul-Majeed, N.S. Hameed, Silicon. 14, 1817 (2022)

    Article  CAS  Google Scholar 

  14. A.K. Mondal, S. Chen, D. Su, K. Kretschmer, H. Liu, G. Wang, J. Alloys Compd. 648, 732 (2015)

    Article  CAS  Google Scholar 

  15. G. Liu, X. Gao, K. Wang, D. He, J. Li, Nano Res. 10, 2096 (2096)

    Article  Google Scholar 

  16. L.P. Mona, S.P. Songca, P.A. Ajibade, Nanatechnol. Rev. 11, 176 (2021)

    Article  Google Scholar 

  17. J. Liu, Z. Wu, Q. Tian, W. Wu, X. Xiao, Cryst. Eng. Comm. 18, 6303 (2016)

    Article  CAS  Google Scholar 

  18. J. Qin, M. Liu, Z. Wang, L. Pei, M. Zhao, Q. Zhou, B. Wu, R. Liu, Mater. Res. Express. 9, 075005 (2022)

    Article  ADS  Google Scholar 

  19. D. Kumar, H. Singh, S. Jouen, B. Hannoyer, S. Banerjee, RSC Adv. 5, 7138 (2015)

    Article  ADS  CAS  Google Scholar 

  20. W.H. Eisa, N. Okasha, J. Sci. Res. Sci. 37, 73 (2020)

    Google Scholar 

  21. C. Chircov, B. Vasile, IntechOpen (2022). https://doi.org/10.5772/intechopen.101784

  22. Z. Wei, X. Wei, S. Wang, D. He, Mater. Lett. 118, 107 (2014)

    Article  CAS  Google Scholar 

  23. F.N. Sayed, V. Polshettiwar, Sci. Rep. 5, 9733 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Results Phys. 7, 3007 (2017)

    Article  ADS  Google Scholar 

  25. S. Hei, Y. Jin, F. Zhang, Ed. A Mudhoo, Hindawi J. Chem. 2014, 546956 (2014)

  26. E.C. Nnadozie, P.A. Ajibade, J Int. J. Electrochem. Sci. 17, 22124 (2022)

    Article  CAS  Google Scholar 

  27. Z. Bazhan, F. Ghodsi, Mazloom, J. Mater. Sci.: Mater. Electron. 29, 11489 (2018)

    CAS  Google Scholar 

  28. J. Lewandowska, M. Staszewska, M. Kepczynski, M. Szuwarzyński, A. Łatkiewicz, Z. Olejniczak, M. Nowakowska, J. Solgel Sci. Technol. 64, 67 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Symbiosis Center for Research and Innovation, Symbiosis International (Deemed University) for their infrastructure and RSF SIU, for their funding support. The authors extend gratitude to the Semiconducting Oxide Materials, Nanostructured and Tailored Heterojunction Lab, Physics Dept. of Physics, IIT Madras, for facilitating UV photosensing measurements.

Funding

Authors acknowledge Symbiosis Centre for Research and Innovations (SCRI) for funding support toward the student. RN is thankful to Symbiosis International (Deemed University) for Research Support Funds (RSF). Authors would further like to acknowledge SAIF/CRNTS, IIT Bombay for providing HRTEM 200 analytical facility.

Author information

Authors and Affiliations

Authors

Contributions

All author contributed to the study conception and design. Material preparation was performed by VEK, AM. Data collection, analysis were performed by VEK, SR and RN. The first draft of the manuscript was written by VEK and all authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rupali Nagar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalokhe, V.E., Mahajan, A., Rani, S. et al. Facile synthesis of photosensitive iron oxide nanorods and their application as UV photodetectors. J Mater Sci: Mater Electron 35, 117 (2024). https://doi.org/10.1007/s10854-023-11874-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11874-w

Navigation