Skip to main content

Advertisement

Log in

A flexible pressure sensor based on embedded cracks and stiffness-regulating layer with high detection limits and wide test ranges

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance flexible pressure sensors have shown great potential in electronic skins, energy harvesting, soft machines, etc. However, there are still significant trade-offs in the optimization of mechanical and sensing performance, resulting in remaining challenges in terms of detection limits, sensing range, and mechanical robustness. Here, we propose a new sensor design strategy that uses a three-dimensional porous structure as an elastic matrix, while introducing anF embedded crack structure and a stiffness-regulating layer to simultaneously improve the mechanical and sensing properties of the sensor. The crack structure endows the sensor with the ability to detect small pressures and a high sensitivity, and the stiffness modulation layer provides the sensor with excellent compressibility and large deformation capabilities based on modulus modulation of the porous structure. In addition, the mechanical stability of the interface is greatly improved due to the wrapping effect of the stiffness-regulating layer on the crack structure, which effectively avoids the risk of the conductive layer slipping and delaminating. The proposed sensor enables the detection of small pressure (100 Pa), favorable sensitivity (0.2 kPa−1), wide sensing range (1 MPa), and stable sensing properties (10,000 cycles), and has also been validated for effective equipment surface and human motion monitoring, promising further expansion of the capabilities of flexible electronics in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z.L. Wang, Recent progress in electronic skin. Adv. Sci. (Weinh). 2, 1500169 (2015)

    Article  PubMed  Google Scholar 

  2. H. Yang, X. Xiao, Z. Li, K. Li, N. Cheng, S. Li, J.H. Low, L. Jing, X. Fu, S. Achavananthadith, F. Low, Q. Wang, P.L. Yeh, H. Ren, J.S. Ho, C.H. Yeow, P.Y. Chen, Wireless Ti3C2Tx MXene strain sensor with Ultrahigh Sensitivity and designated Working Windows for Soft exoskeletons. ACS Nano. 14, 11860–11875 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. Z. Bai, X. Wang, M. Zheng, O. Yue, M. Huang, X. Zou, B. Cui, L. Xie, S. Dong, J. Shang, G. Gong, A.M. Blocki, J. Guo, X. Liu, Mechanically robust and transparent organohydrogel-based E‐skin nanoengineered from natural skin. Adv. Funct. Mater. 33, 2212856 (2023)

    Article  CAS  Google Scholar 

  4. Z. Leng, P. Zhu, X. Wang, Y. Wang, P. Li, W. Huang, B. Li, R. Jin, N. Han, J. Wu, Y. Mao, Sebum-membrane‐inspired protein‐based bioprotonic hydrogel for artificial skin and human‐machine merging interface. Adv. Funct. Mater. 33, 2211056 (2023)

    Article  CAS  Google Scholar 

  5. L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi, R. Yan, Z. Yao, X. Shi, J. Zhi, D. Kai, H.D. Yu, W. Huang, Hydrogel-based flexible electronics. Adv. Mater. 35, 2205326 (2023)

    Article  CAS  Google Scholar 

  6. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwodiauer, 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–161 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. H. Lee, D. Kwon, H. Cho, I. Park, J. Kim, Soft nanocomposite based Multi-point, multi-directional strain Mapping Sensor using Anisotropic Electrical Impedance Tomography. Sci. Rep. 7, 39837 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Yu, J. Li, S.A. Solomon, J. Min, All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Rob. 7, eabn0495 (2022)

    Article  Google Scholar 

  9. D. Kwon, T.I. Lee, J. Shim, S. Ryu, M.S. Kim, S. Kim, T.S. Kim, I. Park, Highly sensitive, flexible, and wearable pressure Sensor based on a giant Piezocapacitive Effect of three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater. Interfaces. 8, 16922–16931 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. C.M. Boutry, A. Nguyen, Q.O. Lawal, A. Chortos, S. Rondeau-Gagne, Z. Bao, A sensitive and biodegradable pressure sensor array for Cardiovascular Monitoring. Adv. Mater. 27, 6954–6961 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Zang, F. Zhang, C.-. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140–156 (2015)

    Article  CAS  Google Scholar 

  12. W. Heng, S. Solomon, W. Gao, Flexible electronics and devices as Human-Machine interfaces for Medical Robotics. Adv. Mater. 34, e2107902 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y. Yang, H. Zhang, Z.-H. Lin, Y.S. Zhou, Q. Jing, Y. Su, Human skin based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as SelfPowered active tactile Sensor System. ACS Nano. 7, 9213–9222 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy. 11, 436–462 (2015)

    Article  CAS  Google Scholar 

  15. G. Zhu, W.Q. Yang, T. Zhang, Q. Jing, J. Chen, Y.S. Zhou, P. Bai, Z.L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14, 3208–3213 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. S. Takamatsu, T. Yamashita, T. Imai, T. Itoh, Lightweight flexible keyboard with a conductive polymer-based touch sensor fabric. Sens. Actuators A: Phys. 220, 153–158 (2014)

    Article  CAS  Google Scholar 

  18. B. Nie, X. Li, J. Shao, X. Li, H. Tian, D. Wang, Q. Zhang, B. Lu, Flexible and transparent strain sensors with embedded Multiwalled Carbon nanotubes Meshes. ACS Appl. Mater. Interfaces. 9, 40681–40689 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. J.T. Muth, D.M. Vogt, R.L. Truby, Y. Menguc, D.B. Kolesky, R.J. Wood, J.A. Lewis, Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. T.S. Natarajan, S.B. Eshwaran, K.W. Stockelhuber, S. Wiessner, P. Potschke, G. Heinrich, A. Das, Strong strain sensing performance of Natural Rubber nanocomposites. ACS Appl. Mater. Interfaces. 9, 4860–4872 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. H. Aguilar-Bolados, M. Yazdani-Pedram, A. Contreras-Cid, M.A. López-Manchado, A. May-Pat, F. Avilés, Influence of the morphology of carbon nanostructures on the piezoresistivity of hybrid natural rubber nanocomposites. Compos. Part B: Eng. 109, 147–154 (2017)

    Article  CAS  Google Scholar 

  22. Y. Zheng, Y. Li, K. Dai, Y. Wang, G. Zheng, C. Liu, C. Shen, A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156, 276–286 (2018)

    Article  CAS  Google Scholar 

  23. Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, C. Shen, The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos. Sci. Technol. 139, 64–73 (2017)

    Article  CAS  Google Scholar 

  24. G. Canavese, S. Stassi, C. Fallauto, S. Corbellini, V. Cauda, V. Camarchia, M. Pirola, C.F. Pirri, Piezoresistive flexible composite for robotic tactile applications. Sens. Actuators A: Phys. 208, 1–9 (2014)

    Article  CAS  Google Scholar 

  25. J.C. Yang, J.O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim, D.W. Kim, H.B. Choi, S. Park, Microstructured Porous pyramid-based Ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces. 11, 19472–19480 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. B. Zhu, Y. Ling, L.W. Yap, M. Yang, F. Lin, S. Gong, Y. Wang, T. An, Y. Zhao, W. Cheng, Hierarchically structured Vertical Gold Nanowire array-based wearable pressure sensors for Wireless Health Monitoring. ACS Appl. Mater. Interfaces. 11, 29014–29021 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. C. Ma, D. Xu, Y.C. Huang, P. Wang, J. Huang, J. Zhou, W. Liu, S.T. Li, Y. Huang, X. Duan, Robust flexible pressure sensors made from Conductive micropyramids for Manipulation tasks. ACS Nano. 14, 12866–12876 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Jeong, J. Park, J. Lee, K. Kim, I. Park, Ultrathin, biocompatible, and flexible pressure sensor with a wide pressure range and its Biomedical Application. ACS Sens. 5, 481–489 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. G.J. Zhu, P.G. Ren, J. Wang, Q. Duan, F. Ren, W.M. Xia, D.X. Yan, A highly sensitive and broad-range pressure Sensor based on polyurethane mesodome arrays embedded with silver nanowires. ACS Appl. Mater. Interfaces. 12, 19988–19999 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. N. Bai, L. Wang, Y. Xue, Y. Wang, X. Hou, G. Li, Y. Zhang, M. Cai, L. Zhao, F. Guan, X. Wei, C.F. Guo, Graded interlocks for Iontronic Pressure Sensors with high sensitivity and high linearity over a broad range. ACS Nano. 16, 4338–4347 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. Z.J. Zhao, S. Hwang, M. Bok, H. Kang, S. Jeon, S.H. Park, J.H. Jeong, Nanopattern-embedded Micropillar structures for Security Identification. ACS Appl. Mater. Interfaces. 11, 30401–30410 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Mao, B. Ji, G. Chen, C. Hao, B. Zhou, Y. Tian, Robust and wearable pressure Sensor assembled from AgNW-Coated PDMS Micropillar sheets with high sensitivity and wide detection range. ACS Appl. Nano Mater. 2, 3196–3205 (2019)

    Article  CAS  Google Scholar 

  33. L. Cheng, W. Qian, L. Wei, H. Zhang, T. Zhao, M. Li, A. Liu, H. Wu, A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions. J. Mater. Chem. C 8, 11525–11531 (2020)

    Article  CAS  Google Scholar 

  34. X. Tang, W. Yang, S. Yin, G. Tai, M. Su, J. Yang, H. Shi, D. Wei, J. Yang, Controllable graphene wrinkle for a high-performance flexible pressure Sensor. ACS Appl. Mater. Interfaces. 13, 20448–20458 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. J. Yan, Y. Ma, X. Li, C. Zhang, M. Cao, W. Chen, S. Luo, M. Zhu, Y. Gao, Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure. Ceram. Int. 46, 23592–23598 (2020)

    Article  CAS  Google Scholar 

  36. Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao, N. Sun, F. Li, H.-Y. Zhang, J.-C. Han, Y. Yang, A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021)

    Article  CAS  Google Scholar 

  37. J. Zhang, L.J. Zhou, H.M. Zhang, Z.X. Zhao, S.L. Dong, S. Wei, J. Zhao, Z.L. Wang, B. Guo, P.A. Hu, Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale. 10, 7387–7395 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. G.Y. Bae, S.W. Pak, D. Kim, G. Lee, H. Kim do, Y. Chung, K. Cho, Linearly and highly pressure-sensitive electronic skin based on a Bioinspired hierarchical structural array. Adv. Mater. 28, 5300–5306 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Z. Yu, G. Cai, X. Liu, D. Tang, Platinum nanozyme-triggered pressure-based Immunoassay using a three-Dimensional Polypyrrole Foam-based flexible pressure Sensor. ACS Appl. Mater. Interfaces. 12, 40133–40140 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. X. Wu, Y. Han, X. Zhang, Z. Zhou, C. Lu, L.-A. Compliant, Low-Cost, and versatile pressure-sensing platform based on microcrack-designed Carbon Black@Polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 26, 6246–6256 (2016)

    Article  CAS  Google Scholar 

  41. X. Lei, L. Ma, Y. Li, Y. Cheng, G.J. Cheng, F. Liu, Highly sensitive and wide-range flexible pressure sensor based on carbon nanotubes-coated polydimethylsiloxane foam. Mater. Lett. 308, 131151 (2022)

    Article  CAS  Google Scholar 

  42. Y. Xiong, Y. Zhu, X. Liu, P. Zhu, Y. Hu, R. Sun, C.-P. Wong, A flexible pressure sensor based on melamine foam capped by copper nanowires and reduced graphene oxide. Mater. Today Commun. 24, 100970 (2020)

    Article  CAS  Google Scholar 

  43. Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces. 11, 6685–6704 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. J. Zhai, Y. Zhang, C. Cui, A. Li, W. Wang, R. Guo, W. Qin, E. Ren, H. Xiao, M. Zhou, Flexible Waterborne Polyurethane/Cellulose Nanocrystal Composite aerogels by integrating Graphene and Carbon Nanotubes for a highly sensitive pressure Sensor. ACS Sustain. Chem. Eng. 9, 14029–14039 (2021)

    Article  CAS  Google Scholar 

  45. L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8, 20030–20036 (2020)

    Article  CAS  Google Scholar 

  46. S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-Layered, Hierarchical Fabric‐Based Tactile Sensors with High Sensitivity and Linearity in Ultrawide Pressure Range. Adv. Funct. Mater. 29, 1902484 (2019)

    Article  Google Scholar 

  47. L. Huang, R. Zeng, D. Tang, X. Cao, Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy 99, 107376 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support of the Natural Science Research Project of Shaanxi Provincial Department of Education (No.22JK0453).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by YL, TL, and YQ. The first draft of the manuscript was written by YL and XW. Project administration, conceptualization, and formal analysis were performed by YL, TL, and XW. Visualization, Investigation, and Methodology were performed by YL and YQ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiong Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,387 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Lei, T., Qin, Y. et al. A flexible pressure sensor based on embedded cracks and stiffness-regulating layer with high detection limits and wide test ranges. J Mater Sci: Mater Electron 35, 110 (2024). https://doi.org/10.1007/s10854-023-11835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11835-3

Navigation