Skip to main content
Log in

Role of active edge sites of atomically thin CVD-grown MoS2 layers on the enhanced visible-light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Atomically thin MoS2 layers have emerged as promising semiconductor photocatalytic materials candidate due to their unique thickness-induced physical properties. In this work, we report on the growth of MoS2 layers on sapphire substrates using a gas-phase chemical vapor deposition (CVD) approach. By tuning the CVD growth parameters, MoS2 monolayers with isolated triangular grains and continuous monolayer samples were obtained. We demonstrate that the MoS2 samples with triangular grains exhibit better photocatalytic degradation efficiency ∼ 95.39% for MB dye solution compared with continuous monolayer MoS2 samples (93.58%). Our findings suggest that the presence of active edge sites in the isolated triangular grains plays a vital role in controlling optical and chemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be provided on reasonable request from the corresponding author (SKE).

References

  1. J. Singh, S.A. Khan, J. Shah, R.K. Kotnala, S. Mohapatra, Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl. Surf. Sci. 422, 953–961 (2017)

    CAS  Google Scholar 

  2. F. Marrakchi, W.A. Khanday, M. Asif, B.H. Hameed, Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int. J. Biol. Macromol. 93, 1231–1239 (2016)

    CAS  Google Scholar 

  3. W. Ashraf, T. Fatima, K. Srivastava, M. Khanuja, Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Appl. Nanosci. 9, 1515–1529 (2019)

    CAS  Google Scholar 

  4. L.C. Sim, K.H. Leong, S. Ibrahim, P. Saravanan, Graphene oxide and ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A Mater. Energy Sustain. 2, 5315–5322 (2014)

    CAS  Google Scholar 

  5. H. Mittal, A. Maity, S.S. Ray, Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel. Int. J. Biol. Macromol. 79, 8–20 (2015)

    CAS  Google Scholar 

  6. M. Patel, M.H. Patel, C.K. Sumesh, Visible light enhanced photocatalytic performance of WS2 catalyst for the degradation of ternary dye mixture. 3rd International conference on condensed matter and applied physics (ICC-2019), AIP Publishing; 2020. https://doi.org/10.1063/5.0001154

  7. J. Di, J. Xia, H. Li, Z. Liu, Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: opportunities and challenges. Nano Energy. 35, 79–91 (2017)

    CAS  Google Scholar 

  8. S.H.S. Chan, T. Yeong Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 86, 1130–1158 (2011)

    CAS  Google Scholar 

  9. Facile, synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Appl. Catal. B 2016;193:36–46

  10. D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016)

    CAS  Google Scholar 

  11. X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42, 8187–8199 (2013)

    CAS  Google Scholar 

  12. M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)

    CAS  Google Scholar 

  13. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu et al., Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem. Int. Ed. Engl. 51, 8727–8731 (2012)

    CAS  Google Scholar 

  14. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, M. Potemski, Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale. 7, 10421–10429 (2015)

    CAS  Google Scholar 

  15. T. Cheiwchanchamnangij, W.R.L. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B Condens. Matter Mater. Phys. (2012). https://doi.org/10.1103/physrevb.85.205302

    Article  Google Scholar 

  16. Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catal. 1, 44–68 (2021)

  17. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng et al., MoS2/TiO2 Edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)

    Google Scholar 

  18. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    CAS  Google Scholar 

  19. I.A. Rahman, A. Purqon, First principles study of molybdenum disulfide electronic structure. J. Phys. Conf. Ser. 877, 012026 (2017)

    Google Scholar 

  20. J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji, T. Gao et al., Controllable growth and transfer of monolayer MoS2 on au foils and its potential application in hydrogen evolution reaction. ACS Nano 8, 10196–10204 (2014)

    CAS  Google Scholar 

  21. S. Wu, J.S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Fei et al., Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013)

    CAS  Google Scholar 

  22. K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)

    CAS  Google Scholar 

  23. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    CAS  Google Scholar 

  24. Recoverable, Reusable visible-light photocatalytic performance of CVD grown atomically thin MoS2 films. Chemosphere 287, 132347 (2022)

    Google Scholar 

  25. R. Abinaya, J. Archana, S. Harish, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan et al., Ultrathin layered MoS nanosheets with rich active sites for enhanced visible light photocatalytic activity. RSC Adv. 8, 26664–26675 (2018)

    CAS  Google Scholar 

  26. R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide. Nature. 360, 444–446 (1992)

    CAS  Google Scholar 

  27. C.N.R. Rao, M. Nath, Inorganic nanotubes. Dalton Trans. (2003). https://doi.org/10.1039/B208990B

    Article  Google Scholar 

  28. H.-P. Komsa, A.V. Krasheninnikov, Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B Condens. Matter Mater. Phys. (2015). https://doi.org/10.1103/physrevb.91.125304

    Article  Google Scholar 

  29. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007)

    CAS  Google Scholar 

  30. S.V.P. Vattikuti, C. Byon, C.V. Reddy, R.V.S.S.N. Ravikumar, Improved photocatalytic activity of MoS2 nanosheets decorated with SnO2 nanoparticles. RSC Adv. 5, 86675–86684 (2015)

    CAS  Google Scholar 

  31. L. Lin, N. Miao, J. Huang, S. Zhang, Y. Zhu, D.D. Horsell et al., A photocatalyst of sulphur depleted monolayered molybdenum sulfide nanocrystals for dye degradation and hydrogen evolution reaction. Nano Energy. 38, 544–552 (2017)

    CAS  Google Scholar 

  32. M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Google Scholar 

  33. 1T- And 2H-mixed phase MoS2 nanosheets coated on hollow mesoporous TiO2 nanospheres with enhanced photocatalytic activity, J. Colloid Interface Sci. 567:10–17, (2020).

  34. G. Zhang, J. Wang, Z. Wu, R. Shi, W. Ouyang, A. Amini et al., Shape-dependent defect structures of monolayer MoS crystals grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 9, 763–770 (2017)

    CAS  Google Scholar 

  35. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013)

    Google Scholar 

  36. N.B. Shinde, B.D. Ryu, K. Meganathan, B. Francis, C.-H. Hong, S. Chandramohan et al., Large-scale atomically thin monolayer 2H-MoS2 field-effect transistors. ACS Appl. Nano Mater. 3, 7371–7376 (2020)

    CAS  Google Scholar 

  37. V. Murugan, K. Meganathan, N.B. Shinde, S.K. Eswaran, Strain-mediated unusual bandgap bowing in continuous composition tuned monolayer Mo1–xWxS2 ternary alloys. Appl. Phys. Lett. 118, 013102 (2021)

    CAS  Google Scholar 

  38. N.B. Shinde, B. Francis, M.S. Ramachandra Rao, B.D. Ryu, S. Chandramohan, S.K. Eswaran, Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Mater. 7, 081113 (2019)

    Google Scholar 

  39. M. Buscema, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7, 561–571 (2014)

    Google Scholar 

  40. R.C. Cooper, C. Lee, C.A. Marianetti, X. Wei, J. Hone, J.W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B Condens. Matter Mater. Phys. (2013). https://doi.org/10.1103/physrevb.87.035423

    Article  Google Scholar 

  41. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Google Scholar 

  42. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano. 4, 2695–2700 (2010)

    CAS  Google Scholar 

  43. C. Ma, J. Yan, Y. Huang, Z. Zheng, G. Yang, Direct-indirect bandgap transition in monolayer MoS induced by an individual Si nanoparticle. Nanotechnology. 31, 065204 (2020)

    CAS  Google Scholar 

  44. K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan et al., Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028–13035 (2014)

    CAS  Google Scholar 

  45. A. Castellanos-Gomez, J. Quereda, H.P. van der Meulen, N. Agraït, G. Rubio-Bollinger, Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 27, 115705 (2016)

    Google Scholar 

  46. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    CAS  Google Scholar 

  47. A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin et al., Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014)

    CAS  Google Scholar 

  48. B. Kalanyan, W.A. Kimes, R. Beams, S.J. Stranick, E. Garratt, I. Kalish et al., Rapid wafer-scale growth of polycrystalline 2H–MoS by pulsed metalorganic chemical vapor deposition. Chem. Mater. 29, 6279–6288 (2017)

    CAS  Google Scholar 

  49. J. Gao, B. Li, J. Tan, P. Chow, T.-M. Lu, N. Koratkar, Aging of transition metal dichalcogenide monolayers. ACS Nano 10, 2628–2635 (2016)

    CAS  Google Scholar 

  50. J. Benson, M. Li, S. Wang, P. Wang, P. Papakonstantinou, Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl. Mater. Interfaces 7, 14113–14122 (2015)

    CAS  Google Scholar 

  51. Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu et al., Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13, 3870–3877 (2013)

    CAS  Google Scholar 

  52. Y. Yuan, R.-T. Guo, L.-F. Hong, X.-Y. Ji, Z.-S. Li, Z.-D. Lin et al., Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: a review. Colloids Surf. A Physicochem. Eng. Asp. 611, 125836 (2021)

    CAS  Google Scholar 

  53. S.H. Yu, Z. Tang, Y. Shao, H. Dai, H.Y. Wang, J. Yan et al., In situ hybridizing MoS2 microflowers on VS2 microflakes in a one-pot CVD process for electrolytic hydrogen evolution reaction. ACS Appl. Energy Mater. 2, 5799–5808 (2019)

    CAS  Google Scholar 

  54. In-situ chemical vapor deposition to fabricate cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance. J Colloid Interface Sci. 570, 143–52, (2020)

  55. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, Controlled exfoliation of monodispersed MoS2 layered nanostructures by a ligand-assisted hydrothermal approach for the realization of ultrafast degradation of an organic pollutant. RSC Adv. 6, 109495–109505 (2016)

    CAS  Google Scholar 

  56. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 7, 24754–24763 (2017)

    CAS  Google Scholar 

  57. S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. Trends Analyt. Chem. 49, 31–44 (2013)

    CAS  Google Scholar 

  58. N. Saha, A. Sarkar, A.B. Ghosh, P. Mondal, J. Satra, B. Adhikary, Advanced catalytic performance of amorphous MoS for degradation/reduction of organic pollutants in both individual and simultaneous fashion. Ecotoxicol. Environ. Saf. 160, 290–300 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank SRMIST for the financial support through Seed Grant and Startup Grant for the establishment of MicroRaman facility. The authors thank Nanotechnology Research Center (NRC) for providing characterization facilities.

Funding

The authors gratefully acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India for the financial support under the research Grants Nos: ECR/2016/000918 and CRG/2021/002938.

Author information

Authors and Affiliations

Authors

Contributions

ASS, SH, MN, and SKE have conceived and designed the research work. ASS, VM, and NBS have contributed to the implementation the idea. All the authors have contributed to data analysis and writing of the manuscript.

Corresponding author

Correspondence to Senthil Kumar Eswaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, A.S., Shinde, N.B., Murugan, V. et al. Role of active edge sites of atomically thin CVD-grown MoS2 layers on the enhanced visible-light photocatalytic activity. J Mater Sci: Mater Electron 35, 27 (2024). https://doi.org/10.1007/s10854-023-11742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11742-7

Navigation