Skip to main content
Log in

Transformation of corn cob waste into mesoporous carbon by template-free method and construction of TiO2-mesoporous carbon nanocomposite for MO dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this investigation, transformation of agricultural corn cob waste into mesoporous carbon nanoparticles (MCNPS) by template-free method. This synthesized MCNPs are used for the construction of Titanium dioxide-Mesoporous carbon (TMC) nanocomposites by precipitation and calcination method. Synthesized samples were confirmed by various characterization techniques. The photocatalytic behavior of the TMC nanocomposites was checked by the degradation of Methyl Orange (MO) in the presence of UV light. The optimized TMC21 composite shows 92% degradation efficiency towards MO dye within 80 min under UV light than the bare TiO2 and also shows excellent stability and recyclability after five runs. The histo-toxicological studies are done by using freshwater Lobeo Rohita fish organs such as kidney and ovary. The results show that MO dye-containing solution damages the internal structure of kidney and ovary tissues whereas the photo-degraded product of MO dye exhibited no variations in their typical structure similar to the control group indicating that the MO-degraded solution is non-toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on reasonable request.

References

  1. S.V. Kite, A.N. Kadam, D.J. Sathe, S. Patil, S.S. Mali, C.K. Hong, S.W. Lee, K.M. Garadkar, ACS Omega 6, 17071 (2021)

    CAS  Google Scholar 

  2. X. Wang, J. Li, K. Chen, J. Li, Y. Jia, Q. Mei, Q. Wang, Sep. Purif. Technol. 303, 122205 (2022)

    CAS  Google Scholar 

  3. B. Jagruti, Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 9, 436 (2015)

    Google Scholar 

  4. O.A. Shabaan, H.S. Jahin, G.G. Mohamed, Arab. J. Chem. 13, 4797 (2020)

    CAS  Google Scholar 

  5. M. Alaguprathana, M. Poonkothai, Environ. Sci. Pollut. Res. 28, 17602 (2021)

    CAS  Google Scholar 

  6. Z. Wang, S. Liu, J. Zhang, J. Yan, Y. Zhao, C. Mahoney, R. Ferebee, D. Luo, J. Pietrasik, M.R. Bockstaller, K. Matyjaszewski, Langmuir 33, 12276 (2017)

    CAS  Google Scholar 

  7. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, J. Ind. Eng. Chem. 97, 111 (2021)

    CAS  Google Scholar 

  8. L. Li, X. Yang, C. Xie, Y. Wang, L. Wei, J. Yang, Opt. Mater. 123, 111947 (2022)

    CAS  Google Scholar 

  9. X. Shi, L. Wang, A.A. Zuh, Y. Jia, F. Ding, H. Cheng, Q. Wang, J. Alloys Compd. 903, 163889 (2022)

    CAS  Google Scholar 

  10. A. Gautam, A. Kshirsagar, R. Biswas, S. Banerjee, P.K. Khanna, RSC Adv. 6, 2746 (2016)

    CAS  Google Scholar 

  11. R. Kumar, G. Kumar, A. Umar, Mater. Lett. 97, 100 (2013)

    CAS  Google Scholar 

  12. S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–205, 158 (2012)

    Google Scholar 

  13. S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Nanoscale Res. Lett. 10, 1–13 (2015)

    CAS  Google Scholar 

  14. A. Fakhri, S. Behrouz, Sol. Energy 112, 163 (2015)

    CAS  Google Scholar 

  15. K. Prakash, P. Senthil Kumar, S. Pandiaraj, K. Saravanakumar, S. Karuthapandian, J. Exp. Nanosci. 11, 1138 (2016)

    CAS  Google Scholar 

  16. N.T. Padmanabhan, N. Thomas, J. Louis, D.T. Mathew, P. Ganguly, H. John, S.C. Pillai, Chemosphere 271, 129506 (2021)

    CAS  Google Scholar 

  17. L. Wang, X. Ma, G. Huang, R. Lian, J. Huang, H. She, Q. Wang, J. Environ. Sci. 112, 59 (2022)

    CAS  Google Scholar 

  18. W. Xine, Y. Song, RSC Adv. 5, 83239–83285 (2015)

    Google Scholar 

  19. M. Wu, L. Li, J. Liu, Y. Li, P. Ai, W. Wu, J. Zheng, New Carbon Mater. 30, 471 (2015)

    CAS  Google Scholar 

  20. W.K. Buah, J.J. Maccarthy, S.A. Ndur, Int. J. Environ. Prot. Policy 4, 98 (2016)

    Google Scholar 

  21. S. Somasundaram, K. Sekar, V.K. Gupta, S. Ganesan, J. Mol. Liq. 177, 416 (2013)

    CAS  Google Scholar 

  22. G.O. El-Sayed, M.M. Yehia, A.A. Asaad, Water Resour. Ind. 7–8, 66 (2014)

    Google Scholar 

  23. H. Wu, R. Chen, H. Du, J. Zhang, L. Shi, Y. Qin, L. Yue, J. Wang, Adsorpt. Sci. Technol. 37, 34 (2019)

    CAS  Google Scholar 

  24. Y. Guo, C. Tan, J. Sun, W. Li, J. Zhang, C. Zhao, Chem. Eng. J. 381, 122736 (2020)

    CAS  Google Scholar 

  25. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, J. Hazard. Mater. 153, 709 (2008)

    CAS  Google Scholar 

  26. S. Akbayrak, Z. Ozcifci, A. Tabak, Biomass Bioenerg. 138, 105589 (2020)

    CAS  Google Scholar 

  27. N.S. Ammar, N.A. Fathy, H.S. Ibrahim, S.M. Mousa, Appl Water Sci 11, 1 (2021)

    Google Scholar 

  28. W. Sun, Y. Xiao, Q. Ren, F. Yang, J. Energy Storage 27, 101070 (2020)

    Google Scholar 

  29. K. Surya, M.S. Michael, J. Electroanal. Chem. 878, 114674 (2020)

    CAS  Google Scholar 

  30. S. Karthikeyan, M. Jambulingam, P. Sivakumar, A.P. Shekhar, J. Krithika, E-Journal 3, 303 (2006)

    CAS  Google Scholar 

  31. A. Alesci, N. Cicero, A. Fumia, C. Petrarca, R. Mangifesta, V. Nava, P. Lo Cascio, S. Gangemi, M. Di Gioacchino, E.R. Lauriano, Toxics 10, 218 (2022)

    CAS  Google Scholar 

  32. S.M. Adams, W.D. Crumby, M.S. Greeley, M.G. Ryon, E.M. Schilling, Environ. Toxicol. Chem. 11, 1549 (1992)

    CAS  Google Scholar 

  33. L. Benejam, J. Benito, J. Ordóñez, J. Armengol, E. García-Berthou, Water Air Soil Pollut. 190, 3 (2008)

    CAS  Google Scholar 

  34. A. Nasrullah, B. Saad, A.H. Bhat, A.S. Khan, M. Danish, M.H. Isa, A. Naeem, J. Clean. Prod. (2018)

  35. A.R. Kuldeep, A.S. Bhosale, K.M. Garadkar, J. Mater. Sci.: Mater. Electron. 31, 9006–9017 (2020)

    CAS  Google Scholar 

  36. X.Y. Liu, M. Huang, H.L. Ma, Z.Q. Zhang, J.M. Gao, Y.L. Zhu, X.J. Han, X.Y. Guo, Molecules 15, 7188 (2010)

    CAS  Google Scholar 

  37. O.S. Nille, R.S. Patel, B.Y. Borate, S.S. Babar, G.B. Kolekar, A.H. Gore, Environ. Sci. Pollut. Res. 30, 38425 (2023)

    CAS  Google Scholar 

  38. S. Muthusamy, J. Charles, J. Mater. Sci. 32, 7349 (2021)

    CAS  Google Scholar 

  39. B. Xing, C. Shi, C. Zhang, G. Yi, L. Chen, H. Guo, G. Huang, J. Cao, J. Nanomater. 2016, 3 (2016)

    Google Scholar 

  40. G. Radhika, P. Rajkumar, R. Subadevi, M. Sivakumar, Ionics 26, 5463 (2020)

    CAS  Google Scholar 

  41. M. Maletić, M. Vukčević, A. Kalijadis, I. Janković-Častvan, A. Dapčević, Z. Laušević, M. Laušević, Arab. J. Chem. 12, 4388 (2019)

    Google Scholar 

  42. S.B. Babar, N.L. Gavade, J. Park, K.M. Garadkar, V.M. Bhuse, J. Mater. Sci. 28, 8372 (2017)

    CAS  Google Scholar 

  43. S.B. Shinde, O.S. Nille, A.H. Gore, N.B. Birajdar, G.B. Kolekar, P.V. Anbhule, Langmuir 38, 13543–13557 (2022)

    CAS  Google Scholar 

  44. W. Li, R. Liang, N.Y. Zhou, Z. Pan, ACS Omega 5, 10042–10051 (2020)

    CAS  Google Scholar 

  45. C. Parvathiraja, S. Katheria, M.R. Siddiqui, S.M. Wabaidur, M.A. Islam, W.C. Lai, Catalysts 12, 834 (2022)

    CAS  Google Scholar 

  46. Y. Li, L. Xu, Y. Bao, M. Cheng, H. Wang, J. Porous Mater. 25, 95 (2018)

    Google Scholar 

  47. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Spectrochim. Acta Part A 117, 622 (2014)

    CAS  Google Scholar 

  48. Y. Zhang, W. Zhang, K. Yang, Y. Yang, J. Jia, Y. Liang, L. Guo, J. Environ. Eng. 146, 1 (2020)

    Google Scholar 

  49. M. Karnan, K. Subramani, P.K. Srividhya, M. Sathish, Electrochim. Acta 228, 586–596 (2017)

    CAS  Google Scholar 

  50. Y.I.N. Bo, W. Ji-tong, X.U. Wei, L. Dong-hui, Q. Wen-ming, New Carbon Mater. 28, 47 (2013)

    Google Scholar 

  51. J. Wei, Y. Liang, X. Zhang, G.P. Simon, D. Zhao, J. Zhang, S. Jiang, H. Wang, Nanoscale 7, 6247 (2015)

    CAS  Google Scholar 

  52. S. Ma, J. Gu, Y. Han, Y. Gao, Y. Zong, Z. Ye, J. Xue, ACS Omega 4, 21063–21071 (2019)

    CAS  Google Scholar 

  53. H. Cheng, W. Zhang, X. Liu, T. Tang, J. Xiong, J. Chem. 2021, 9986158 (2021)

    Google Scholar 

  54. S.B. Babar, N.L. Gavade, D.P. Bhopate, A.N. Kadam, S.B. Kokane, S.D. Sartale, A. Gophane, K.M. Garadkar, V.M. Bhuse, J. Mater. Sci. 30, 1133 (2019)

    CAS  Google Scholar 

  55. S.B. Shinde, S.R. Bhosale, N.B. Birajdar, A.H. Gore, G.B. Kolekar, S.S. Kolekar, A.D. Mandake, P.V. Anbhule, Langmuir 39, 6324–6336 (2023)

    CAS  Google Scholar 

  56. S.B. Shinde, S.D. Dhengale, O.S. Nille, S.S. Jadhav, A.H. Gore, T.R. Bhosale, N.B. Birajdar, S.S. Kolekar, G.B. Kolekar, P.V. Anbhule, Inorg. Chem. Commun. 147, 110242 (2023)

    CAS  Google Scholar 

  57. S. Purohit, K.L. Yadav, S. Satapathi, Langmuir 37, 3467 (2021)

    CAS  Google Scholar 

  58. D. Paramitha, M.F. Ulum, A. Purnama, D.H.B. Wicaksono, D. Noviana, H. Hermawan, Monitoring Degradation Products and Metal Ions in Vivo (Elsevier Ltd, Amsterdam, 2017)

    Google Scholar 

  59. A. Kadam, R. Dhabbe, A. Gophane, T. Sathe, K. Garadkar, J. Photochem. Photobiol. B. 154, 24 (2016)

    CAS  Google Scholar 

  60. A.G. Naikwade, M.B. Jagadale, D.P. Kale, A.D. Gophane, K.M. Garadkar, G.S. Rashinkar, ACS Omega 5, 131 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

Author SBS is thankful to BARTI/ Fellowship/ BANRF-2018/19-20/3036.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SBS has prepared graphical abstract, investigation, and writing of the manuscript. OSN and GBK have provided Instrument facility. SRB has provided Instrument facility. ABS, AAM and ADM have provided characterization facility. NBB has provided cytotoxicity study. Conceptualization, formal analysis, and manuscript writing were reviewed under the guidance of PVA. All authors have seen and approved the final version of the manuscript being submitted. We warrant that the article is the authors’ original work, has not received prior publication, and is not under consideration for publication elsewhere.

Corresponding author

Correspondence to Prashant V. Anbhule.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This work is submitted in Compliance with Ethical Standards. It is not being submitted nor published elsewhere in any form or language.

Consent to participate

Not applicable, no human subjects are involved.

Consent to publish

The participant has consented to the submission of this work to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2318 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S.B., Nille, O.S., Shinde, A.B. et al. Transformation of corn cob waste into mesoporous carbon by template-free method and construction of TiO2-mesoporous carbon nanocomposite for MO dye degradation. J Mater Sci: Mater Electron 35, 43 (2024). https://doi.org/10.1007/s10854-023-11687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11687-x

Navigation