Skip to main content

Advertisement

Log in

Grain size engineered K0.5Na0.5NbO3 ceramic with enhanced piezoelectric properties by introducing Zn additive

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing lead-free piezoelectric materials is crucial for replacing lead-contained materials in electronics. In this study, we address the challenges of low breakdown strength and poor sinterability in (K, Na)NbO3 (KNN) ceramics by introducing Zn as a sintering aid. The effects of Zn concentration on the structure, breakdown strength, dielectric, and piezoelectric properties of KNN ceramics have been investigated. The Zn-modified KNN ceramics exhibited a dense microstructure with reduced grain size and high breakdown strength. Remarkably, the grain size engineered KNN-xZn (x = 0.02) ceramic demonstrated a significantly enhanced d33 value of 97 pC/N, which was 47% higher than that of the pure KNN ceramic. Simulation results revealed that the accumulation and discharge of electric charges on the surface of undissolved ZnO, due to its high electrical conductivity, led to a degradation in the piezoelectric property. These findings provide insights into the design of lead-free piezoceramics and offer a feasible approach for developing novel KNN-based materials for electromechanical transduction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. P. Jia, Z. Zheng, Y. Li, Z. Li, T. Liu, Y. Wang, The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion. J. Alloys Compd. 930, 167416 (2023)

    Article  CAS  Google Scholar 

  2. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vaněk, J. Petzelt, M. Eriksson, Z. Shen, Broadband dielectric response and grain-size effect in K0.5Na0.5NbO3 ceramics. J. Appl. Phys. 107, 014111 (2010)

    Article  Google Scholar 

  3. S. Park, J. Jang, C.-W. Ahn, B.-D. Hahn, W.-H. Yoon, J.W. Lee, J.-J. Choi, Y. Min, Buffered template strategy for improving texture quality and piezoelectric properties of heterogeneous templated grain growth (K,na)NbO3-based ceramics through interface engineering. J. Eur. Ceram. Soc. 43, 1932–1940 (2023)

    Article  CAS  Google Scholar 

  4. E. Buixaderas, D. Nuzhnyy, I. Gregora, S. Kamba, B. Malic, M. Kosec, Polar modes in K0.5Na0.5NbO3 ceramics. Ferroelectrics. 391, 51–57 (2009)

    Article  CAS  Google Scholar 

  5. C.-W. Ahn, G. Han, J. Ryu, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, J.-W. Kim, J.-H. Choi, D.-S. Park, Composition design rule for high piezoelectric voltage coefficient in (K0.5Na0.5)NbO3 based Pb-Free ceramics. Jpn. J. Appl. Phys. 51, 09MD10 (2012)

    Article  Google Scholar 

  6. E. Pinheiro, T. Deivarajan, A concise review encircling lead free porous piezoelectric ceramic. Acta Phys. Pol., A 136, 555–565 (2019)

    Article  CAS  Google Scholar 

  7. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, Design and electrical properties’ investigation of (K0.5Na0.5)NbO3–BiMeO3 lead-free piezoelectric ceramics. J. Appl. Phys. 104, 034104 (2008)

    Article  Google Scholar 

  8. Y. Chang, Z. Yang, X. Chao, R. Zhang, X. Li, Dielectric and piezoelectric properties of alkaline-earth titanate doped (K0.5Na0.5)NbO3 ceramics. Mater. Lett. 61, 785–789 (2007)

    Article  CAS  Google Scholar 

  9. X. Huo, F. Wang, T. Zhang, M. Zhang, M. Guo, A dispersed polycrystalline phase boundary constructed in CaZrO3 modified KNN based ceramics with both excellent piezoelectric properties and thermal stability. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.01.169

    Article  Google Scholar 

  10. D. Xiao, J. Zhu, Effect of doping ions on the properties of KNN-based lead-free piezoelectric ceramics. Ferroelectrics. 404, 10–18 (2010)

    Article  CAS  Google Scholar 

  11. H. Beltrán-Mir, X. Vendrell, dos E.L. Santos Veiga, L. Mestres, E. Cordoncillo, Structural and electrical properties of Zr-doped K0.48Na0.52NbO3 ceramics: hard lead-free piezoelectric. Boletín De La Sociedad Española De Cerámica Y Vidrio. (2023). https://doi.org/10.1016/j.bsecv.2022.12.001

    Article  Google Scholar 

  12. Z. Cen, F. Cao, M. Feng, Z. Li, Z. Xu, G. Luo, N. Luo, K. Xie, L. Li, X. Wang, Simultaneously improving piezoelectric strain and temperature stability of KNN-based ceramics via defect design. J. Eur. Ceram. Soc. 43, 939–946 (2023)

    Article  CAS  Google Scholar 

  13. C. Chen, C. Tan, J. Zhang, Y. Hao, Y. Huan, K. Bi, Phase structure and photoluminescence of Pr3+ doped (K,na)NbO3-based multifunctional ceramics. J. Electron. Mater. 47, 6551–6556 (2018)

    Article  CAS  Google Scholar 

  14. K. Chen, Y. Jiao, Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Front. Mater. Sci. 11, 59–65 (2017)

    Article  Google Scholar 

  15. A. Hussain, N. Sinha, S. Bhandari, H. Yadav, B. Kumar, Synthesis of 0.64Pb(Mg1/3Nb2/3)O3–0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications. J. Asian. Ceam. Soc. 4, 337–343 (2016)

    Article  Google Scholar 

  16. A. Hussain, N. Sinha, A.J. Joseph, K. Dhankhar, S. Goel, B. Kumar, Improvement in dielectric, piezoelectric and ferroelectric properties of 0.64PMN–0.36PT ceramics by sb modification. J. Mater. Sci.: Mater. Electron. 28, 14298–14307 (2017)

    CAS  Google Scholar 

  17. A. Hussain, N. Sinha, K. Dhankhar, A.J. Joseph, B. Kumar, Giant piezoelectric behavior in relaxor ferroelectric environment friendly Na0.52K0.44Li0.04Nb0.84Ta0.10Sb0.06O3 ceramics for high temperature applications. J. Mater. Sci.: Mater. Electron. 29, 6403–6411 (2018)

    CAS  Google Scholar 

  18. W. Chen, F. Wang, K. Yan, Y. Zhang, D. Wu, Micro-stereolithography of KNN-based lead-free piezoceramics. Ceram. Int. 45, 4880–4885 (2019)

    Article  CAS  Google Scholar 

  19. M. Dubernet, M.J. Pitcher, M. Zaghrioui, M. Bah, J. Bustillo, F. Giovannelli, I. Monot-Laffez, Synthesis routes for enhanced piezoelectric properties in spark plasma sintered Ta-doped KNN ceramics. J. Eur. Ceram. Soc. 42, 2188–2194 (2022)

    Article  CAS  Google Scholar 

  20. H. Huang, X. Chen, J. Lu, H. Lian, Ferroelectric and dielectric properties of KF-added (K0.48Na0.52)NbO3 lead-free ceramics. Phys. B: Condens. Matter. 564, 28–32 (2019)

    Article  CAS  Google Scholar 

  21. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, F.-Z. Yao, D.J. Green, (K,na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  22. J. Lan, X. Chen, L. Liu, H. Lian, Y. He, Y. Song, L. Zhu, P. Liu, Low-temperature synthesis of K0.5Na0.5NbO3 ceramics in a wide temperature window via cold-sintering assisted sintering method and enhanced electrical properties. J. Eur. Ceram. Soc. 43, 73–81 (2023)

    Article  CAS  Google Scholar 

  23. R.B. Atkin, R.M. Fulrath, Point defects and sintering of lead zirconate-titanate. J. Am. Ceram. Soc. 54, 265–270 (1971)

    Article  CAS  Google Scholar 

  24. S.-H. Park, C.-W. Ahn, S. Nahm, J.-S. Song, Microstructure and Piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3Ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)

    Article  CAS  Google Scholar 

  25. W. Wu, D. Xiao, J. Wu, J. Li, J. Zhu, Phase structure, piezoelectric and multiferrioc behavior of (K0.48Na0.52)NbO3-Co2O3 piezoelectric ceramics. Funct. Mater. Lett. 04, 225–229 (2012)

    Article  Google Scholar 

  26. T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J.-F. Li, Y. Gu, J. Zhu, S. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)

    Article  CAS  Google Scholar 

  27. Z. Zhang, S. Zhou, Q. Li, W. Li, M.V. Swain, Sensitivity analysis of bi-layered ceramic dental restorations. Dent. Mater. 28, E6–E14 (2012)

    Article  CAS  Google Scholar 

  28. W. Chen, W.Z. Yang, X.Q. Liu, X.M. Chen, Structural, dielectric and magnetic properties of Ba3SrLn2Fe2Nb8O30 (ln = La, Nd, Sm) filled tungsten bronze ceramics. J. Alloys Compd. 675, 311–316 (2016)

    Article  CAS  Google Scholar 

  29. C. Hu, L. Hou, L. Fang, L. Liu, Preparation and dielectric properties of unfilled tungsten bronze ferroelectrics Ba4RETiNb9O30. J. Alloys Compd. 581, 547–552 (2013)

    Article  CAS  Google Scholar 

  30. S. Jindal, A. Vasishth, S. Devi, G. Anand, A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr. Ferroelectr. 186, 1–9 (2018)

    Article  CAS  Google Scholar 

  31. P. Bharathi, K.B.R. Varma, Effect of the addition of B2O3 on the density, microstructure, dielectric, piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 ceramics. J. Electron. Mater. 43, 493–505 (2013)

    Article  Google Scholar 

  32. W. Liu, B. Zhou, H. Wang, C. Li, Y. Du, C. Cheng, Enhanced electromechanical response in (K,na)NbO3-based ferroelectrics by phase boundary and nonstoichiometric engineering. Mater. Sci. Semiconduct. Process. 155, 107239 (2023)

    Article  CAS  Google Scholar 

  33. L. Qiao, G. Li, H. Tao, J. Wu, Z. Xu, F. Li, Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic. Ceram. Int. 46, 5641–5644 (2020)

    Article  CAS  Google Scholar 

  34. W. Shi, Y. Feng, T. Lu, Y. Lu, J. Shen, J. Xue, J. Du, P. Fu, J. Hao, W. Li, Photoluminescence and impedance properties of rare-earth doped (K0.5Na0.5)NbO3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 30, 9–16 (2018)

    Google Scholar 

  35. J. Zhao, H. Du, S. Qu, H. Zhang, Z. Xu, Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chin. Sci. Bull. 56, 2389–2393 (2011)

    Article  CAS  Google Scholar 

  36. Y. Zhang, M. Li, S. Yang, J. Zhai, Low-temperature sintering of KNN-based lead free ceramics. Solid State Commun. 324, 114133 (2021)

    Article  CAS  Google Scholar 

  37. B. Yin, Y. Huan, Z. Wang, X. Lin, S. Huang, T. Wei, Enhanced thermal reliability of Mn-doped (K,na)NbO3-based piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 30, 18659–18665 (2019)

    CAS  Google Scholar 

  38. Y. Zhai, Y. Feng, J. Du, J. Xue, J. Shen, Y. Lu, T. Lu, P. Fu, W. Li, J. Hao, The impedance, dielectric and piezoelectric properties of Tb4O7 and Tm2O3 doped KNN ceramics. J. Mater. Sci.: Mater. Electron. 30, 4352–4358 (2019)

    CAS  Google Scholar 

  39. L. Wang, W. Ren, W. Ma, M. Liu, P. Shi, X. Wu, Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics. AIP Adv. 5, 097120 (2015)

    Article  Google Scholar 

  40. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)

    Article  CAS  Google Scholar 

  41. W. Liu, H. Wang, W. Hu, Y. Du, C. Cheng, Understanding the origin of the high piezoelectric performance of KNN-based ceramics from the perspective of lattice distortion. Ceram. Int. 48, 9731–9738 (2022)

    Article  CAS  Google Scholar 

  42. A. Rahman, M. Jiang, G. Rao, S. Lee, M.-H. Kim, M. Habib, J.U. Rahman, Improved ferroelectric, piezoelectric, and dielectric properties in pure KNN translucent ceramics by optimizing the normal sintering method. Ceram. Int. 48, 20251–20259 (2022)

    Article  CAS  Google Scholar 

  43. X. Pang, J. Qiu, K. Zhu, J. Du, Effect of ZnO on the microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 23, 1083–1086 (2011)

    Google Scholar 

  44. H.M. Zhang, J.B. Zhao, S.B. Qu, H.L. Du, Effects of A-site equivalence and non-equivalence substitution on structure and electric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Adv. Mater. Res. 627, 687–693 (2012)

    Article  Google Scholar 

  45. P. Xiong, G.Q. Tan, H.J. Ren, Influence of Ta5+ Doping on the piezoelectric properties of KNN ceramics. Key Eng. Mater. 512–515, 1399–1402 (2012)

    Article  Google Scholar 

  46. X. Lv, Z. Li, J. Wu, D. Xiao, J. Zhu, Lead-free KNbO3: xZnO composite ceramics. ACS Appl. Mater. Interfaces. 8, 30304–30311 (2016)

    Article  CAS  Google Scholar 

  47. B. Yang, H. Peng, Y. Zhang, X. Shang, T. Zhou, J. Guo, Enhancing depolarization temperature and thermal stability of KNN-based piezoelectric ceramics through Li substitution and Al2O3 doping. Mater. Res. Bull. 158, 112077 (2023)

    Article  CAS  Google Scholar 

  48. Y. Pan, J. Feng, L. Huang, Z. Xu, Y. Chen, New insight on two-step sintering process of lead-free (K,na)NbO3-based piezoelectric ceramics. Mater. Today Commun. 34, 105340 (2023)

    Article  CAS  Google Scholar 

  49. C. Wang, B. Fang, Y. Qu, Z. Chen, S. Zhang, J. Ding, Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering. J. Alloys Compd. 832, 153043 (2020)

    Article  CAS  Google Scholar 

  50. J. Shi, H. Fan, Thermal properties and phase transition behavior of KNN-AN piezoelectric ceramics. Ferroelectrics. 420, 7–11 (2011)

    Article  CAS  Google Scholar 

  51. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K,na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018)

    Article  Google Scholar 

  52. X. Zhu, Y. Gao, P. Shi, R. Kang, F. Kang, W. Qiao, J. Zhao, Z. Wang, Y. Yuan, X. Lou, Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3-based lead-free relaxor ceramics with excellent temperature stability. Nano Energy. 98, 107276 (2022)

    Article  CAS  Google Scholar 

  53. A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Kumar, Ferroelectric Sb-doped PMN-PT crystal: high electromechanical response with true-remanent polarization and resistive leakage analyses. J. Mater. Sci.: Mater. Electron. 29, 19567–19577 (2018)

    CAS  Google Scholar 

  54. A. Hussain, N. Sinha, S. Goel, A.J. Joseph, B. Kumar, Y3+ doped 0.64PMN-0.36PT ceramic for energy scavenging applications: excellent piezo-/ferro-response with the investigations of true-remanent polarization and resistive leakage. J. Alloys Compd. 790, 274–287 (2019)

    Article  CAS  Google Scholar 

  55. A. Hussain, B. Kumar, Intrinsic polarization and resistive leakage analyses in high performance piezo-/pyroelectric Ho-doped 0.64PMN-0.36PT binary ceramic. Adv. Powder Technol. 29, 3124–3137 (2018)

    Article  CAS  Google Scholar 

  56. Y.X. Liu, W.B. Qu, H.C. Thong, Y. Zhang, Y.F. Zhang, F.Z. Yao, T.N. Nguyen, J.W. Li, M.H. Zhang, J.F. Li, B. Han, W. Gong, H.J. Wu, C.F. Wu, B. Xu, K. Wang, Isolated-oxygen-vacancy hardening in lead-free piezoelectrics. Adv. Mater. 34(29), 2202558 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52202142 and 52372124), the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2022JQ-337), the Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology (Grant Nos. 2019QNBJ-12 and 2018BJ-07).

Author information

Authors and Affiliations

Authors

Contributions

Preparation and performing of the experiments, electrical properties measurements, manuscript’s writing—origin draft, XH; paper’s idea, experimental designing, data analysis, manuscript’s writing—review and editing, PG, CL and ZL; experimental investigation and data processing, XH, RZ and PL; data analysis, language polishing, XC, FZ and ZL. All authors have read and agreed to the published version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pan Gao, Chang Liu or Zenghui Liu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 384.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Huang, X., Liu, C. et al. Grain size engineered K0.5Na0.5NbO3 ceramic with enhanced piezoelectric properties by introducing Zn additive. J Mater Sci: Mater Electron 34, 2210 (2023). https://doi.org/10.1007/s10854-023-11652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11652-8

Navigation