Skip to main content

Advertisement

Log in

Preparation and properties of flexible electromagnetic shielding composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although traditional metallic electromagnetic shielding materials have appeared for quite a long time, the defects of high density and poor flexibility have limited their further applications for modern society. Luckily, a flexible rubber stuffed with light conductive materials is promising to solve this puzzlement and hence has attracted much attention. In this paper, a novel kind of flexible electromagnetic shielding material system was invented using cobalt-plated carbon aerogel as a conductive filler in the silicone rubber matrix. With a cobalt content of 30%, the 8-layered composite reveals the tensile strength of the composite is 1.23 MPa, and the fracture elongation is 128.7%. The shielding efficiency was measured to be 11.56 dB, and the electromagnetic wave transmittance of the composite was significantly decreased to less than 10%, indicating that at least 90% of electromagnetic waves can be reflected or absorbed. This excellent electromagnetic shielding performance can be ascribed to a combined action of interlayer multiple reflections, low dielectric loss of carbon aerogel, and low magnetic loss of cobalt particles. In addition, the composite also shows a good hydrophobic and high thermal stability, further extending the application feasibility in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

6. References

  1. Z.X. Wang, B. Jiao, Y.C. Qing et al., Acs Appl. Mater. Inter. 12, 2826 (2020). https://doi.org/10.1021/acsami.9b17513

    Article  CAS  Google Scholar 

  2. L. Huang, J.J. Li, Y.B. Li, X.D. Heb, Y. Yuan, Nanoscale. 11, 8616 (2019). https://doi.org/10.1039/c9nr02102g

    Article  CAS  Google Scholar 

  3. A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30, 2000823 (2020)

    Google Scholar 

  4. Y. Zhang, T. Pan, Z. Yang, Chem. Eng. J. 389, 124433 (2020)

    Article  Google Scholar 

  5. J. Cheng, C. Li, Y. Xiong et al., Nano-Micro Lett. 80, 014 (2022)

    Google Scholar 

  6. H. Zhuo, Y.J. Hu, X. Tong, L.X. Zhong, X.W. Peng, Ind. Crop. Prod. 87, 229 (2016). https://doi.org/10.1016/j.indcrop.2016.04.041

    Article  CAS  Google Scholar 

  7. P. Hao, Z.H. Zhao, J. Tian et al., Nanoscale. 6, 12120 (2014). https://doi.org/10.1039/c4nr03574g

    Article  CAS  Google Scholar 

  8. S.S. Long, Y.C. Feng, Y.Z. Liu et al., Sep. Purif. Technol. 254, 117577 (2021). https://doi.org/10.1016/j.seppur.2020.117577

    Article  CAS  Google Scholar 

  9. Y. Hardjono, H.Q. Sun, H.Y. Tian, C.E. Buckley, S.B. Wang, Chem. Eng. J. 174, 376 (2011). https://doi.org/10.1016/j.cej.2011.09.009

    Article  CAS  Google Scholar 

  10. O. Gomez-Capiro, A. Hinkle, A.M. Delgado, C. Fernandez, R. Jimenez, L.E. Arteaga-Perez, Catalysts 8, 8090374 (2018). https://doi.org/10.3390/catal8090347

    Article  CAS  Google Scholar 

  11. E.L. Hu, X.B. Wu, S.M. Shang, X.M. Tao, S.X. Jiang, L. Gan, J. Clean. Prod. 112, 4710 (2016). https://doi.org/10.1016/j.jclepro.2015.06.127

    Article  CAS  Google Scholar 

  12. S.Q. Zhang, C.G. Huang, Z.Y. Zhou, Z. Li, Mat. Sci. Eng. B-Solid (2002). https://doi.org/10.1016/S0921-5107(01)00750-4

    Article  Google Scholar 

  13. H.B. Zhao, Z.B. Fu, X.Y. Liu et al., Ind. Eng. Chem. Res. 57, 202 (2018). https://doi.org/10.1021/acs.iecr.7b03612

    Article  CAS  Google Scholar 

  14. X.L. Wu, T. Wen, H.L. Guo, S.B. Yang, X.K. Wang, A.W. Xu, Acs Nano. 7, 3589 (2013). https://doi.org/10.1021/nn400566d

    Article  CAS  Google Scholar 

  15. L. Wang, M.C. Liu, G. Wang, B. Dai, F. Yu, J.L. Zhang, J. Alloy Compd. 776, 43 (2019). https://doi.org/10.1016/j.jallcom.2018.10.214

    Article  CAS  Google Scholar 

  16. M. Wang, Z. Zhou, J. Zhu et al., Carbon. 198, 142 (2022)

    Article  CAS  Google Scholar 

  17. J. Yang, X. Liao, J. Li, G. He, G. Li, Compos. Sci. Technol. 181, 107670 (2019)

    Article  CAS  Google Scholar 

  18. H. Huang, P. Song, F. Bu et al., J. Mater. Sci. Mater. Electron. 33, 17011 (2022)

    Article  CAS  Google Scholar 

  19. L. Yang, L. Martin, D. Staiculescu, C.P. Wong, MM Tentzeris (2008) European Microwave Conference p. 10400154

  20. Z.H. Li, X.G. Li, Y.H. Liao, X.P. Li, W.S. Li, J. Power Sources. 334, 23 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.003

    Article  CAS  Google Scholar 

  21. B. Yang, S.H. Zhang, Y.F. Zou, W.S. Ma, G.J. Huang, M.D. Li, Chin. J Polym Sci. 37, 189 (2019). https://doi.org/10.1007/s10118-019-2185-4

    Article  CAS  Google Scholar 

  22. S.A.K.A.S.N.M.B.A.B.H.M.A.F.A.A. Ahmad, Microstructure and dielectric properties of silicone rubber/CCTO composites (2019)

  23. E. Shivakumar, C.K. Das, K.N. Pandey, S. Alam, G.N. Mathur, Macromol. Res. 13, 81 (2005). https://doi.org/10.1007/Bf03219019

    Article  CAS  Google Scholar 

  24. S.P.S.J. Haponiuk, S. Thomas, S. George, J. Polym. Res. 29, 1 (2022). https://doi.org/10.1007/s10965-022-02905-x

    Article  CAS  Google Scholar 

  25. S. Yang, P. Yang, C. Ren, X. Zhao, J. Zhang, J. Colloid Interface Sci. 622, 97 (2022)

    Article  CAS  Google Scholar 

  26. Y. Yin, X. Liu, X. Wei, R. Yu, J Shui, Acs Appl. Mater. Interfaces. 8, 34686 (2016)

    Article  CAS  Google Scholar 

  27. L. Martin, L. Yang, D. Staiculescu et al., Int. J. Numer. Model. Electron. Netw. Dev. Fields 22, 175 (2009)

    Article  Google Scholar 

  28. Y. Fei, M. Liang, T. Zhou, Y. Chen, H.W. Zou, Carbon. 167, 575 (2020). https://doi.org/10.1016/j.carbon.2020.06.013

    Article  CAS  Google Scholar 

  29. H.B. Zhao, J.-B. Cheng, J. Alloys Compounds Interdiscip. J. Mater. Sci. Solid-state Chem. Phys. 736, 71 (2018)

    CAS  Google Scholar 

  30. H.U. Wen-Qi, J. Qian, P. Jing, Insul. Surge Arresters 499, 7 (2013)

    Google Scholar 

  31. X. Wu, X. Li, L. Hao et al.,  Iop Conf. 207, 012011 (2017)

    Google Scholar 

Download references

Funding

The authors would like to thank Major Science and Technology Projects of Anhui Province (Grant No: 2021e03020005) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

YD contributed toward conceptualization, methodology, software, formal analysis, data curation, and writing—original Draft. ZD contributed toward writing—review & editing, supervision, and funding acquisition. FB contributed toward validation and data curation. ML contributed toward formal analysis and writing—review & editing. GL contributed toward formal analysis and writing—review & editing. LL contributed toward formal analysis and writing—review & editing. JW contributed toward writing—review & editing and supervision. CX contributed toward writing—review & editing and supervision. JZ contributed toward writing—review & editing and supervision.

Corresponding author

Correspondence to Jianfeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2510.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Dai, Z., Bu, F. et al. Preparation and properties of flexible electromagnetic shielding composites. J Mater Sci: Mater Electron 34, 2241 (2023). https://doi.org/10.1007/s10854-023-11641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11641-x

Navigation