Skip to main content
Log in

Structural and optical analysis of Eu3+/Sm3+ co-doped zinc borosilicate glass fabricated by modified melt-quenching method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Eu3+/Sm3+ co-doped zinc borosilicate glass was prepared by modified melt-quenching method. The effect of Eu3+/Sm3+ to the structural and optical properties was investigated. The optical band gaps increased from 5.023 to 5.179 eV, and 3.832 to 3.986 eV for both for direct/indirect transition. Urbach energy decreases from 0.713 to 0.697 eV, while refractive index also decreases from 2.203 to 2.173 with the progress of doping concentration. The photoluminescence measurement reveals the simultaneous amplification of Sm3+ and Eu3+ emission for the co-doping sample, suggesting a synergistic energy transfer between the two ions. The 1EuSmZBS glass samples show the highest emission intensity. The CIE chromaticity coordinates, CCT, and color purity of the glass sample present high intensity of reddish-orange emission color. In conclusion, Eu3+/Sm3+ co-doped zinc borosilicate glass can lead to enhanced and tunable luminescence properties, and potentially use as a glass host phosphor in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Kemere, J. Sperga, U. Rogulis, G. Krieke, J. Grube, J. Lumin. 181, 25–30 (2017)

    CAS  Google Scholar 

  2. Ravita, A.S. Rao, J. Lumin. 244, 118689 (2022)

    CAS  Google Scholar 

  3. R.C.C. Monteiro, A.A.S. Lopes, M.M.R.A. Lima, J.P.B. Veiga, J. Non Cryst. Solids. 491, 124–132 (2018)

    CAS  Google Scholar 

  4. P. Vani, G. Vinitha, K.A. Naseer, K. Marimuthu, M. Durairaj, N. Manikandan, J. Mater. Sci. Mater. Electron. 32, 23030–23046 (2021)

    CAS  Google Scholar 

  5. Y.A. Lakshmi, K. Swapna, S. Mahamuda, M. Venkateswarlu, A.S. Rao, Solid State Sci. 116, 106609 (2021)

    Google Scholar 

  6. J. Zhang, K. Tse, M. Wong, Y. Zhang, J. Zhu, Front. Phys. 11, 1–21 (2016)

    Google Scholar 

  7. S. Sharma, A.S. Rao, K. Kishore, J. Non Cryst. Solids. 580, 121392 (2022)

    CAS  Google Scholar 

  8. V. Naresh, B.H. Rudramadevi, S. Buddhudu, J. Alloys Compd. 632, 59–67 (2015)

    CAS  Google Scholar 

  9. R.E.M. Khaidir, Y.W. Fen, M.H.M. Zaid, K.A. Matori, N.A.S. Omar, M.F. Anuar, S.A.A. Wahab, Results Phys. 15, 102596 (2019)

    Google Scholar 

  10. W.M. Cheong, M.H.M. Zaid, K.A. Matori, Y.W. Fen, T.S. Tee, Z.W. Loh, S. Schmid, Optik. 267, 169658 (2022)

    CAS  Google Scholar 

  11. L.A. Ghani, Environ. Sustain. Indic. 12, 100144 (2021)

    Google Scholar 

  12. K. Jha, M. Jayasimhadri, J. Lumin. 194, 102–107 (2018)

    CAS  Google Scholar 

  13. N. Suebsing, C. Bootjomchai, V. Promarak, R. Laopaiboon, J. Non Cryst. Solids. 523, 119598 (2019)

    CAS  Google Scholar 

  14. M. Kumar, A.S. Rao, S. Kaur, Chem. Phys. Lett. 788, 139303 (2022)

    CAS  Google Scholar 

  15. R. Singh, A.K. Bedyal, M. Manhas, H.C. Swart, V. Kumar, J. Alloys Compd. 901, 163793 (2022)

    CAS  Google Scholar 

  16. R.A.A. Wahab, M.H.M. Zaid, K.A. Matori, H.M. Kamari, A.R. Sarmani, Z.W. Loh, W.M. Cheong, S. Honda, Y. Iwamoto, Optik. 270, 170082 (2022)

    CAS  Google Scholar 

  17. X. Zhang, J. Zhang, C. Zhou, Y. Sun, P. Li, X. Qi, J. Non Cryst. Solids. 581, 121228 (2022)

    CAS  Google Scholar 

  18. A.S. Abouhaswa, M.H.A. Mhareb, A. Alalawi, M.S. Al-Buriahi, J. Non Cryst. Solids. 543, 120130 (2020)

    CAS  Google Scholar 

  19. Y. Tayal, A.S. Rao, S. Kaur, Solid State Sci. 125, 106834 (2022)

    CAS  Google Scholar 

  20. D. Jiang, L. Geng, S. Zhou, Y. Wang, Inorg. Chem. Commun. 142, 109668 (2022)

    CAS  Google Scholar 

  21. S.G.M. Mushtaque, A.R. Kadam, S.J. Dhoble, J. Mol. Struct. 1274, 134510 (2023)

    CAS  Google Scholar 

  22. M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, S.O. Baki, M.A. Mahdi, J. Alloys Compd. 844, 155668 (2020)

    CAS  Google Scholar 

  23. Z.W. Loh, W.M. Cheong, M.H.M. Zaid, M.M.A. Kechik, Y.W. Fen, M.Z.H. Mayzan, Y. Yaakob, S. Liza, Appl. Phys. A Mater. Sci. Process. 128, 1–8 (2022)

    Google Scholar 

  24. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. Nandha Gopal, S. Kalpana, R. Rajajeyaganthan, J. Mater. Sci. Mater. Electron. 31, 8865 (2020)

    CAS  Google Scholar 

  25. S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, L. Kumar, J. Phys. Chem. Solids. 151, 109928 (2021)

    CAS  Google Scholar 

  26. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, S.F. Hathot, J. Non Cryst. Solids. 476, 15–24 (2017)

    CAS  Google Scholar 

  27. S.H. Alazoumi, S.A. Aziz, R. El-Mallawany, U.S. ad Aliyu, H.M. Kamari, M.H.M.M. Zaid, K.A. Matori, A. Ushah, Results Phys. 9, 1371–1376 (2018)

    Google Scholar 

  28. K. Linganna, C. Basavapoornima, C.K. Jayasankar, Opt. Commun. 344, 100–105 (2015)

    CAS  Google Scholar 

  29. O.I. Sallam, A. Abdeldaym, F.M. Ezz-Eldin, Mater. Chem. Phys. 252, 123241 (2020)

    CAS  Google Scholar 

  30. P.S. Khan, B.C. Jamalaiah, M. Jayasimhadri, H. Kaur, N. Madhu, P. Raghupathi, K. Pavani, J. Mol. Struct. 1255, 132428 (2022)

    Google Scholar 

  31. Y. Shi, Y. Xu, W. Hu, L. Wang, R. Liu, H. Wang, C. Zhao, X. Chen, M. Shi, Optik. 202, 163599 (2020)

    CAS  Google Scholar 

  32. L. Vijayalakshmi, K.N. Kumar, K.M. Rao, J.D. Baek, P. Hwang, Ceram. Int. 48, 17969–17974 (2022)

    CAS  Google Scholar 

  33. Z. Wu, H. Wu, L. Tang, Y. Li, D. Xiaochun, Y. Guo, J. Non Cryst. Solids. 463, 169–174 (2017)

    CAS  Google Scholar 

  34. W.M. Cheong, M.H.M. Zaid, Y.W. Fen, T.S. Tee, K.A. Matori, Z.W. Loh, M.Z.H. Mayzan, Opt. Laser Technol. 158, 108937 (2023)

    Google Scholar 

  35. R. Cao, H. Liang, T. Chen, Z. Wu, Z. Jiang, X. Yi, J. Wen, Q. Zhong, J. Phys. Chem. Solids. 163, 110569 (2022)

    CAS  Google Scholar 

  36. T. Zhezhera, P. Gluchowski, M. Nowicki, M. Chrunik, A. Majchrowski, D. Kasprowicz, J. Lumin. 258, 119774 (2023)

    CAS  Google Scholar 

  37. A. Kaur, P. Kaur, S. Ahuja, Anal. Methods. 12, 5532–5550 (2020)

    CAS  Google Scholar 

  38. J. Chen, G. Luo, X. Zou, H. Zhang, D. Yuan, H. Wang, C. Su, J. Mater. Sci. Mater. Electron. 33, 20837–20845 (2022)

    CAS  Google Scholar 

  39. R.B. Basavaraj, H. Nagabhushana, B. Daruka Prasad, S.C. Sharma, S.C. Prashantha, B.M. Nagabhushana, Optik. 126, 1745–1756 (2015)

    CAS  Google Scholar 

  40. S. Yi, X. Hu, B. Liang, G. Hu, W. Zhao, Y. Wang, J. Lumin. 207, 105–113 (2019)

    CAS  Google Scholar 

  41. R. Saraf, C. Shivakumara, S. Behera, N. Dhananjaya, H. Nagabhushana, RSC Adv. 5, 9241–9254 (2015)

    CAS  Google Scholar 

Download references

Funding

This research was supported by the Universiti Putra Malaysia through the Geran Putra Berimpak (GP-GPB/2021/9702600) for this research work.

Author information

Authors and Affiliations

Authors

Contributions

WMC contributed toward conceptualization, data curation, formal analysis, investigation, methodology, software, visualization, and writing—original draft. MHMZ contributed toward conceptualization, data curation, formal analysis, funding acquisition, project administration, resource, software, supervision, visualization, and writing—original draft. YWF, TST, and KAM contributed toward conceptualization, data curation, formal analysis, supervision, visualization, and writing—original draft. ZWL contributed toward conceptualization, formal analysis, methodology, software, and writing—original draft. II contributed toward data curation, formal analysis, validation, and writing—review and editing SS contributed toward formal analysis, validation, and writing—review and editing.

Corresponding author

Correspondence to Mohd Hafiz Mohd Zaid.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, W.M., Zaid, M.H.M., Fen, Y.W. et al. Structural and optical analysis of Eu3+/Sm3+ co-doped zinc borosilicate glass fabricated by modified melt-quenching method. J Mater Sci: Mater Electron 34, 2102 (2023). https://doi.org/10.1007/s10854-023-11561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11561-w

Navigation