Skip to main content
Log in

Effect of poling and porosity on BaTiO3 for piezocatalytic dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 18 November 2023

This article has been updated

Abstract

The presence of both organic and inorganic pollutants in water can represent a threat to our ecosystems and pose a challenge to long-term sustainability. As a result, there is a need to investigate novel methods for addressing environmental remediation. Among a variety of techniques available, piezocatalysis has attracted attention due to its abililty to harness the piezoelectric effect for efficient degradation of pollutants. Herein, porous ceramic barium titnate (BaTiO3) pellets for piezocatalytic dye degradation were synthesized using polymethyl methacrylate (PMMA) as a pore former in 0–30 wt% proportion through solid state reaction method. The synthesized porous BaTiO3 pellets were characterized in detail by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and field emission scanning electron microscopy. An increase in the degradation of a methylene blue (MB) dye with an increase in porosity within the BaTiO3 materials, where a maximum degradation was observed for 30 wt% PMMA pellet which has a degradation rate that was ~ 1.75 greater than the dense (0 wt% PMMA) BaTiO3 ceramic pellet. Furthermore, the synthesized porous BaTiO3 ceramic pellets were pulse poled, where the piezoelectric coefficient (d33) decreased with an increase in porosity. The poled 30 wt% PMMA porous BaTiO3 pellet showed approximately ~ 57% MB dye degradation in 180 min, which was comparable with 30 wt% PMMA unpoled BaTiO3 and dense 0 wt% PMMA poled BaTiO3 ceramic pellet. The study provides insights on the influence of poling of a low density porous ceramic pellets, which are utilised as the piezocatalyst for water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

Change history

References

  1. Z. Kang, N. Qin, E. Lin, J. Wu, B. Yuan, D. Bao, Effect of Bi2WO6 nanosheets on the ultrasonic degradation of organic dyes: roles of adsorption and piezocatalysis. J. Clean. Prod. 261, 121125 (2020)

    CAS  Google Scholar 

  2. X. Liu, L. Xiao, Y. Zhang, H. Sun, Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye. J. Mater. 6(2), 256–262 (2020)

    Google Scholar 

  3. S. Verma, M. Sharma, A. Halder, R. Vaish, Effect of poling on piezocatalytic and electrochemical properties of pb (Zr0.52Ti0.48) O3 ceramics. Surf. Interfaces 30, 101827 (2022)

    CAS  Google Scholar 

  4. Z. Liang, C.-F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook. Appl. Catal. B Environ. 241, 256–269 (2019)

    CAS  Google Scholar 

  5. Y. Wang et al., Large piezoelectricity in ternary lead-free single crystals. Adv. Electron. Mater. 6(1), 1900949 (2020)

    CAS  Google Scholar 

  6. C. Porwal et al., Piezocatalytic dye degradation using Bi2O3-ZnO-B2O3 glass-nanocomposites. J. Mater. Res. Technol. 21, 2028–2037 (2022)

    CAS  Google Scholar 

  7. C. Porwal, V.S. Chauhan, R. Vaish, Piezocatalytic activity of CaO–Bi2O3–B2O3 glass-ceramics under ultrasonic vibrations. APL Energy 1(1), 016105 (2023)

    Google Scholar 

  8. A. Gaur et al., Effect of poling on multicatalytic performance of 0.5 ba (Zr0.2Ti0.8) O3-0.5 (Ba0.7Sr0.3) TiO3 ferroelectric ceramic for dye degradation. Mater. (Basel) 15(22), 8217 (2022)

    CAS  Google Scholar 

  9. A. Gaur, V.S. Chauhan, R. Vaish, Planetary ball milling induced piezocatalysis for dye degradation using BaTiO3 ceramics. Environ. Sci. Adv. 2(3), 462–472 (2023)

    CAS  Google Scholar 

  10. S. Dubey et al., Photo/Piezo-catalytic Performance of 0.5 Ba (Zr0.2Ti0.8) O3-0.5 (Ba0.7Sr0.3) TiO3 Ceramic. J. Mater. Res. Technol. (2023). https://doi.org/10.1016/j.jmrt.2023.01.073

    Article  Google Scholar 

  11. C. Porwal, M. Sharma, R. Vaish, V.S. Chauhan, Piezocatalysis dye degradation using SrO-Bi2O3-B2O3 glass-ceramics. ACS Appl. Eng. Mater. (2022). https://doi.org/10.1021/acsaenm.2c00066

    Article  Google Scholar 

  12. Y. Zhao et al., Enhanced photo-piezo-catalytic properties of co-doped Ba0.85Ca0.15Zr0.1 (Ti1-xCox)0.9 ferroelectric ceramics for dye degradation. Ceram. Int. 49(5), 8259–8270 (2023)

    CAS  Google Scholar 

  13. J. Ma et al., High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy. 62, 376–383 (2019)

    CAS  Google Scholar 

  14. W.S. Su, Y.F. Chen, C.L. Hsiao, L.W. Tu, Generation of electricity in GaN nanorods induced by piezoelectric effect. Appl. Phys. Lett. 90(6), 63110 (2007)

    Google Scholar 

  15. Q. Nie, Y. Xie, J. Ma, J. Wang, G. Zhang, High piezo–catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J. Clean. Prod. 242, 118532 (2020)

    CAS  Google Scholar 

  16. Y. Feng et al., Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy. 40, 481–486 (2017)

    CAS  Google Scholar 

  17. K.-S. Hong, H. Xu, H. Konishi, X. Li, Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 116(24), 13045–13051 (2012)

    CAS  Google Scholar 

  18. H. Lin, Z. Wu, Y. Jia, W. Li, R.-K. Zheng, H. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating pb (Zr0.52Ti0.48)O3 fibers. Appl. Phys. Lett. 104(16), 162907 (2014)

    Google Scholar 

  19. X. Xu, Y. Jia, L. Xiao, Z. Wu, Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere. 193, 1143–1148 (2018)

    CAS  Google Scholar 

  20. K. Vajda et al., Photocatalytic activity of TiO2/SWCNT and TiO2/MWCNT nanocomposites with different carbon nanotube content. Phys. Status Solidi 248(11), 2496–2499 (2011)

    CAS  Google Scholar 

  21. Z. Zhang, T. Zheng, X. Li, J. Xu, H. Zeng, Progress of carbon quantum dots in photocatalysis applications. Part. Part. Syst. Charact. 33(8), 457–472 (2016)

    Google Scholar 

  22. W. Han et al., The promoting role of different carbon allotropes cocatalysts for semiconductors in photocatalytic energy generation and pollutants degradation. Front. Chem. 5, 84 (2017)

    Google Scholar 

  23. Q. Liu et al., Na-Sm Bimetallic Regulation and Band Structure Engineering in CaBi2Nb2O9 to Enhance Piezo‐photo‐catalytic Performance. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202303736

    Article  Google Scholar 

  24. Q. Liu et al., A (Bi2O2) 2 + layer as a significant carrier generator and transmission channel in CaBi2Nb2O9 platelets for enhanced piezo-photo-catalytic performance. Nano Energy 108, 108252 (2023)

    CAS  Google Scholar 

  25. Q. Liu et al., Mechanism of interface engineering for ultrahigh piezo-photoelectric catalytic coupling effect of BaTiO3@ TiO2 microflowers. Appl. Catal. B Environ. 318, 121817 (2022)

    CAS  Google Scholar 

  26. J. Ling, K. Wang, Z. Wang, H. Huang, G. Zhang, Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason. Sonochem 61, 104819 (2020)

    CAS  Google Scholar 

  27. P. Wang et al., Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt. Appl. Catal. B Environ. 279, 119340 (2020)

    CAS  Google Scholar 

  28. M. Wang, B. Wang, F. Huang, Z. Lin, Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angew. Chemie Int. Ed. 58(23), 7526–7536 (2019)

    CAS  Google Scholar 

  29. G. Nie, Y. Yao, X. Duan, L. Xiao, S. Wang, Advances of piezoelectric nanomaterials for applications in advanced oxidation technologies. Curr. Opin. Chem. Eng. 33, 100693 (2021)

    Google Scholar 

  30. Y. Chen, N. Wang, O. Ola, Y. Xia, Y. Zhu, Porous ceramics: light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. R Reports. 143, 100589 (2021)

    Google Scholar 

  31. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    CAS  Google Scholar 

  32. J. Roscow, Y. Zhang, J. Taylor, C.R. Bowen, Porous ferroelectrics for energy harvesting applications. Eur. Phys. J. Spec. Top. 224(14), 2949–2966 (2015)

    CAS  Google Scholar 

  33. T. Kobayashi, H. Okada, T. Masuda, R. Maeda, T. Itoh, A digital output piezoelectric accelerometer using a pb (zr, Ti) O3 thin film array electrically connected in series. Smart Mater. Struct. 19(10), 105030 (2010)

    Google Scholar 

  34. H. Nogami, T. Kobayashi, H. Okada, T. Masuda, R. Maeda, T. Itoh, Impact of reflow on the output characteristics of piezoelectric microelectromechanical system devices. Jpn J. Appl. Phys. 51(9S1), 09LD11 (2012)

    Google Scholar 

  35. C.A. Balanis, Advanced engineering electromagnetics  (Wiley, NY, 1999)

    Google Scholar 

  36. T. Kobayashi, Y. Suzuki, N. Makimoto, H. Funakubo, R. Maeda, Influence of pulse poling on the piezoelectric property of pb (Zr0.52, Ti0.48) O3 thin films. AIP Adv. 4(11), 117116 (2014)

    Google Scholar 

  37. M. Nakajima, A. Wada, T. Yamada, Y. Ehara, T. Kobayashi, H. Funakubo, Impact of pulse poling on static and dynamic ferroelastic-domain contributions in tetragonal pb (Ti, Zr) O3 films determined by in-situ x–ray diffraction analysis. J. Appl. Phys. 116(19), 194102 (2014)

    Google Scholar 

  38. A. Gaur, V.S. Chauhan, R. Vaish, Porous BaTiO3 ceramic with enhanced piezocatalytic activity for water cleaning application. Surf. Interfaces 36, 102497 (2023)

    CAS  Google Scholar 

  39. A. Gaur, M. Sharma, V.S. Chauhan, R. Vaish, Visible light photocatalytic activity in BiFeO3 glass-ceramics. Mater. Chem. Phys. 303, 127710 (2023)

    CAS  Google Scholar 

  40. G. Singh, M. Sharma, R. Vaish, Transparent ferroelectric glass–ceramics for wastewater treatment by piezocatalysis. Commun. Mater. 1(1), 1–8 (2020)

    Google Scholar 

  41. A. Gaur, M. Sharma, V.S. Chauhan, R. Vaish, Solar/visible light photocatalytic dye degradation using BaTi1-xFexO3 ceramics.  J. Am. Ceram. Soc (2022). https://doi.org/10.1111/jace.18514

    Article  Google Scholar 

  42. C.H. Perry, D.B. Hall, Temperature dependence of the Raman Spectrum of BaTiO3. Phys. Rev. Lett. 15(17), 700 (1965)

    CAS  Google Scholar 

  43. U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58(21), 14256 (1998)

    CAS  Google Scholar 

  44. A. Gajović, J.V. Pleština, K. Žagar, M. Plodinec, S. Šturm, M. Čeh, Temperature-dependent Raman spectroscopy of BaTiO3 nanorods synthesized by using a template‐assisted sol–gel procedure. J. Raman Spectrosc. 44(3), 412–420 (2013)

    Google Scholar 

  45. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3 Part I—isolated particles and aggregates. J. Raman Spectrosc. Int. J. Orig. Work all Asp. Raman Spectrosc. Incl. High. Order Process.  Brillouin Rayleigh Scatt 38(10), 1288–1299 (2007)

    CAS  Google Scholar 

  46. M. Wegmann, L. Watson, A. Hendry, XPS analysis of submicrometer barium titanate powder. J. Am. Ceram. Soc. 87(3), 371–377 (2004)

    CAS  Google Scholar 

  47. Y. Wu, B. Dong, J. Zhang, H. Song, C. Yan, The synthesis of ZnO/SrTiO3 composite for high-efficiency photocatalytic hydrogen and electricity conversion. Int. J. Hydrogen Energy 43(28), 12627–12636 (2018)

    CAS  Google Scholar 

  48. R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET. BJH, and DFT,” Can. J. Chem. Eng. 97(11), 2781–2791 (2019)

    CAS  Google Scholar 

  49. T. Ohji, M. Fukushima, Macro-porous ceramics: processing and properties. Int. Mater. Rev. 57(2), 115–131 (2012)

    CAS  Google Scholar 

  50. D. Atkinson, A.I. Mcleod, K.S.W. Sing, A. Capon, Physical adsorption and heat of immersion studies of microporous carbons. Carbon N. Y. 20(4), 339–343 (1982)

    CAS  Google Scholar 

  51. M.S. Jamil et al., Dense and fine-grained barium titanate prepared by spark plasma sintering. J Phy: Conf. Series 1191, 12039 (2019)

    CAS  Google Scholar 

  52. V.Y. Topolov, S.V. Glushanin, C.R. Bowen, Piezoelectric response of porous ceramic and composite materials based on Pb (Zr, Ti) O3: experiment and modelling. Adv. Appl. Ceram. 104(6), 300–305 (2005)

    CAS  Google Scholar 

  53. M. Fukushima, T. Fujiwara, T. Fey, K. Kakimoto, One-or two‐dimensional channel structures and properties of piezoelectric composites via freeze‐casting. J. Am. Ceram. Soc. 100(12), 5400–5408 (2017)

    CAS  Google Scholar 

  54. T. Fuchigami, Y. Sumiya, K. Kakimoto, Ferroelectric domain formation and photocatalytic activity on porous alkali niobate piezoelectric ceramics. J. Ceram. Soc. Japan. 129(7), 425–431 (2021)

    CAS  Google Scholar 

  55. J.I. Roscow, Y. Zhang, M.J. Kraśny, R.W.C. Lewis, J. Taylor, C.R. Bowen, Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting. J. Phys. D Appl. Phys. 51(22), 225301 (2018)

    Google Scholar 

  56. T.W. Hamann, F. Gstrein, B.S. Brunschwig, N.S. Lewis, Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts. J. Am. Chem. Soc. 127(21), 7815–7824 (2005)

    CAS  Google Scholar 

  57. T.W. Hamann, F. Gstrein, B.S. Brunschwig, N.S. Lewis, Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces. J. Am. Chem. Soc. 127(40), 13949–13954 (2005)

    CAS  Google Scholar 

  58. T.W. Hamann, F. Gstrein, B.S. Brunschwig, N.S. Lewis, Measurement of the driving force dependence of interfacial charge-transfer rate constants in response to pH changes at n-ZnO/H2O interfaces. Chem. Phys. 326(1), 15–23 (2006)

    CAS  Google Scholar 

  59. L.N. German, M.B. Starr, X. Wang, Computation of electronic energy band diagrams for piezotronic semiconductor and electrochemical systems. Adv. Electron. Mater. 4(3), 1700395 (2018)

    Google Scholar 

  60. P. Wardman, Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data. 18(4), 1637–1755 (1989)

    CAS  Google Scholar 

  61. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 111(49), 18288–18293 (2007)

    CAS  Google Scholar 

  62. S.C. Rai et al., Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe core/shell nanowire array. Adv. Electron. Mater. 1(4), 1400050 (2015)

    Google Scholar 

  63. Y. Cui, J. Briscoe, S. Dunn, Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 - influence on the carrier separation and stern layer formation. Chem. Mater. (2013). https://doi.org/10.1021/cm402092f

    Article  Google Scholar 

  64. E. Lin, J. Wu, N. Qin, B. Yuan, Z. Kang, D. Bao, Enhanced piezocatalytic, photocatalytic and piezo-/photocatalytic performance of diphasic Ba1–xcaxTiO3 nanowires near a solubility limit. Catal. Sci. Technol. 9(24), 6863–6874 (2019)

    CAS  Google Scholar 

  65. G. Singh, M. Sharma, R. Vaish, Exploring the piezocatalytic dye degradation capability of lithium niobate. Adv. Powder Technol. 31(4), 1771–1775 (2020)

    CAS  Google Scholar 

  66. S. Tiwari, A. Gaur, R. Vaish, Sonocatalysis and photocatalysis in Ba0.5Sr0.5TiO3 ceramics. Int. J. Appl. Ceram. Technol. (2023). https://doi.org/10.1111/ijac.14467

    Article  Google Scholar 

  67. C. Porwal, A. Gaur, V.S. Chauhan, R. Vaish, Laser induced crystallization in lithium borate-bismuth tungstate glass-ceramic for photocatalytic dye degradation. J. Eur. Ceram. Soc. (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.07.040

    Article  Google Scholar 

  68. A. Gaur, M. Sharma, V.S. Chauhan, R. Vaish, BaTiO3 crystallized glass-ceramic for water cleaning application via piezocatalysis. Nano-Structures  Nano-Objects 35, 101005 (2023)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Large Research Groups Program under grant number R.G.P2/431/44.

Funding

This work was supported by  Deanship of Scientific Research, King Khalid University (Grant No:  L.R.G.P2/431/44).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. AG: Methodology, experimentation and writing original draft; CP: Assisted in performing experiments; MS: Helped in performing few experiments; VSC: Supervision, validation, writing first draft; RV: Contributed to design experiments and planning; IK: Helped in analyzing microstructural data; IB: Helped in analyzing calatytic performance.

Corresponding author

Correspondence to Vishal Singh Chauhan.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to error in funding grant number.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, A., Porwal, C., Sharma, M. et al. Effect of poling and porosity on BaTiO3 for piezocatalytic dye degradation. J Mater Sci: Mater Electron 34, 2099 (2023). https://doi.org/10.1007/s10854-023-11451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11451-1

Navigation