Skip to main content
Log in

Exploring room temperature multiferroicity in Mg0.3Co0.7Fe2O4 films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic materials with sizeable magnetization and electric polarization simultaneously at room temperature hold the promise for the realization of low-dissipation multifunctional devices. Here, we demonstrate room temperature multiferroicity in a single-phase Mg0.3Co0.7Fe2O4 spinel ferrite thin films. X-ray diffraction (XRD) patterns along with Raman spectroscopy elucidate spinel structure with Fd \(\overline{3 }\) m space group for Mg0.3Co0.7Fe2O4 thin film. The existence of Fe3+, Co2+, and Mg2+ in the Mg0.3Co0.7Fe2O4 films was confirmed by using X-ray photoelectron spectroscopy (XPS). The local magnetic properties were probed by conducting the (magnetic force microscopy) MFM measurements and grain-like magnetic domain structures have been observed. The irreversible behavior of temperature-dependent field cooled (FC) and zero field cooled (ZFC) magnetization curves suggests that the Neel temperature and blocking temperature are higher than 380 K. Mg0.3Co0.7Fe2O4 thin film exhibits typical ferroelectric hysteresis and ferromagnetic hysteresis with saturation polarization of 1.7 µC cm–2 and saturation polarization 148 emu cm–3, which suggest the multiferroicity of the spinel thin film. Piezoresponse response measurements suggest a piezoelectric displacement of 30 Å. The peculiar multiferroicity in the spinel films likely originates from cation ordering and local frustration induced by the inclusion of Mg2+ in the sublattices of the spinel structure. The activation energy of 0.467 eV is calculated which suggests that the polar on hopping could be responsible for the conduction characteristics in the present films. The finding of multiferroicity of Mg0.3Co0.7Fe2O4 thin film may lead to the advancement of multiferroic material for new information storage technology and magnetoelectric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. P.C. Rout, A. Ray, U. Schwingenschlögl, Ferromagnetism and ferroelectricity in a superlattice of antiferromagnetic perovskite oxides without ferroelectric polarization. npj Comput. Mater. 9, 165 (2023)

    Article  CAS  Google Scholar 

  2. H. Wu, Y.L. Zhang, H. Ao, S.Q. Zhong, Z.X. Zeng, W.C. Li, R.L. Gao et al., Controlling magnetoelectric coupling effect of CoFe2O4–Ba0.8Sr0.2TiO3 multiferroic fluids by viscosity. New J. Chem. 47, 4113–4125 (2023)

    Article  CAS  Google Scholar 

  3. K. He, B. Barut, S. Yin, M.D. Randle, R. Dixit, N. Arabchigavkani et al., Graphene on chromia: a system for beyond-room-temperature spintronics. Adv. Mater. 34, 2105023 (2022)

    Article  CAS  Google Scholar 

  4. X. Li, J. Casamento, P. Dang, Z. Zhang, O. Afuye, A.B. Mei et al., Spin–orbit torque field-effect transistor (SOTFET): proposal for a magnetoelectric memory. Appl. Phys. Lett. 116, 242405 (2020)

    Article  CAS  Google Scholar 

  5. P. Makushko, T. Kosub, O.V. Pylypovskyi, N. Hedrich, J. Li, A. Pashkin et al., Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films. Nat. Commun. 13, 6745 (2022)

    Article  CAS  Google Scholar 

  6. S.B. Chen, H.S. Sun, J.F. Ding, F. Wu, C.X. Huang, E. Kan, Unconventional distortion induced two-dimensional multiferroicity in a CrO3 monolayer. Nanoscale 13, 13048–13056 (2021)

    Article  CAS  Google Scholar 

  7. P. Couture, G.V.M. Williams, J. Kennedy, J. Leveneur, P.P. Murmu, S.V. Chong et al., Nanocrystalline multiferroic BiFeO3 thin films made by room temperature sputtering and thermal annealing, and formation of an iron oxide-induced exchange bias. J. Alloys Compd. 695, 3061–3068 (2017)

    Article  CAS  Google Scholar 

  8. H. Jani, J.J. Linghu, S. Hooda, R.V. Chopdekar, C.J. Li, G.J. Omar et al., Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3. Nat. Commun. 12, 1668 (2021)

    Article  CAS  Google Scholar 

  9. M. Giraldo, Q.N. Meier, A. Bortis, D. Nowak, N.A. Spaldin, M. Fiebig et al., Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order. Nat. Commun. 12, 3093 (2021)

    Article  CAS  Google Scholar 

  10. F. Orlandi, D. Delmonte, G. Calestani, E. Cavalli, E. Gilioli, V.V. Shvartsman et al., γ-BaFe2O4: a fresh playground for room temperature multiferroicity. Nat. Commun. 13, 7968 (2022)

    Article  CAS  Google Scholar 

  11. S. Sharma, N. Ahmad, S. Khan, Effect on structural, optical, electrical, and magnetic properties of Ce and Ni co-doped SmFeO3 nanostructures. J. Mater. Sci. Mater. Electron. 34, 476 (2023)

    Article  CAS  Google Scholar 

  12. M. Popov, I. Zavislyak, H.G. Qu, A.M. Balbashov, M.R. Page, G. Srinivasan, In-plane current induced nonlinear magnetoelectric effects in single crystal films of barium hexaferrite. Sci. Rep. 12, 5374 (2022)

    Article  CAS  Google Scholar 

  13. X. Li, Y. Yun, A. SinghThind, Y.W. Yin, Q. Li, W.B. Wang et al., domain-wall magnetoelectric coupling in multiferroic hexagonal YbFeO3 films. Sci. Rep. 13, 1755 (2022)

    Article  Google Scholar 

  14. A. Sundaresan, N.V. Ter-Oganessian, Magnetoelectric and multiferroic properties of spinels. J. Appl. Phys. 129(6), 060901 (2021)

    Article  CAS  Google Scholar 

  15. H. Schmid, E. Ascher, Are antiferroelectricity and other physical properties “hidden” in spinel compounds? J. Phys. C Solid State Phys. 7(15), 2697–2706 (1974)

    Article  CAS  Google Scholar 

  16. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.P. He, T. Arima, Y. Tokura, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96(20), 207204 (2006)

    Article  CAS  Google Scholar 

  17. Y.J. Choi, J. Okamoto, D.J. Huang, K.S. Chao, H.J. Lin, C.T. Chen et al., Thermally or magnetically induced polarization reversal in the Multiferroic CoCr2O4. Phys. Rev. Lett. 102(6), 067601 (2009)

    Article  CAS  Google Scholar 

  18. K. Tomiyasu, J. Fukunaga, K. Suzuki, Magnetic short-range order and reentrant-spin-glass-like behavior inCoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements. Phys. Rev. B 70(21), 214434 (2004)

    Article  Google Scholar 

  19. T. Zou, T.Q. Cai, C.R. dela Cruz, V.O. Garlea, S.D. Mahanti, J.G. Cheng et al., Up-up-down-down magnetic chain structure of the spin-12 tetragonally distorted spinel GeCu2O4. Phys. Rev. B 94(21), 214406 (2016)

    Article  Google Scholar 

  20. A. Ruff, Z. Wang, S. Zherlitsyn, J. Wosnitza, S. Krohns, H.A. Krug von Nidda et al., Multiferroic spin-superfluid and spin-supersolid phases in MnCr2S4. Phys. Rev. B 100(1), 014404 (2019)

    Article  CAS  Google Scholar 

  21. A. Miyata, H. Suwa, T. Nomura, L. Prodan, V. Felea, Y. Skourski et al., Spin-lattice coupling in a ferrimagnetic spinel: Exotic H−T phase diagram of MnCr2S4 up to 110 T. Phys. Rev. B 101(5), 054432 (2020)

    Article  CAS  Google Scholar 

  22. K. Geirhos, S. Krohns, H. Nakamura, T. Waki, Y. Tabata, I. Kézsmárki et al., Orbital-order driven ferroelectricity and dipolar relaxation dynamics in multiferroic GaMo4S8. Phys. Rev. B 98(22), 224306 (2018)

    Article  CAS  Google Scholar 

  23. E.C. Schueller, D.A. Kitchaev, J.L. Zuo, J.D. Bocarsly, J.A. Cooley, A. Van der Ven et al., Structural evolution and skyrmionic phase diagram of the lacunar spinel GaMo4Se8. Phys. Rev. Mater. 4(6), 064402 (2020)

    Article  CAS  Google Scholar 

  24. E. Ruff, A. Butykai, K. Geirhos, S. Widmann, V. Tsurkan, E. Stefanet et al., Polar and magnetic order in GaV4Se8. Phys. Rev. B 96(16), 65119 (2017)

    Article  Google Scholar 

  25. M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima et al., Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv. Mater. 21(44), 4452–4455 (2009)

    Article  CAS  Google Scholar 

  26. P.N. Ravi Shankar, S. Mishra, S. Athinarayanan, Polar magnetic oxides from chemical ordering: a new class of multiferroics. APL Mater. 8(4), 040906 (2020)

    Article  CAS  Google Scholar 

  27. C.D. Pham, J. Chang, M.A. Zurbuchen, J.P. Chang, Magnetic properties of CoFe2O4 thin films synthesized by radical-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 9(42), 36980–36988 (2017)

    Article  CAS  Google Scholar 

  28. X. Chen, X. Zhu, W. Xiao, G. Liu, Y.P. Feng, J. Ding et al., Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. ACS Nano 9(4), 4210–4218 (2015)

    Article  CAS  Google Scholar 

  29. S. Robbennolt, E. Menendez, A. Quintana, A. Gomez, S. Auffret, V. Baltz et al., Reversible, electric-field induced magneto-ionic control of magnetism in mesoporous cobalt ferrite thin films. Sci. Rep. 9(1), 10804 (2019)

    Article  Google Scholar 

  30. G.D. Dwivedi, K.F. Tseng, C.L. Chan, P. Shahi, J. Lourembam, B. Chatterjee et al., Signature of ferroelectricity in magnetically ordered Mo-dopedCoFe2O4. Phys. Rev. B 82(13), 134428 (2010)

    Article  Google Scholar 

  31. N.V. Ter-Oganessian, Cation-ordered magnetic spinels as magnetoelectrics. J. Magn. Magn. Mater. 364, 47–54 (2014)

    Article  CAS  Google Scholar 

  32. X.M. Ren, Y.M. Han, X.G. Chen, Y. Fu, F. Wang, K. Hu et al., Room-temperature multiferroicity and magnetoelectric couplings in (Co0.75Al0.25)2(Fe0.75Mg0.25)O4 spinel films. J. Alloys Compd. 920, 165918 (2022)

    Article  CAS  Google Scholar 

  33. M. Foerster, M. Iliev, N. Dix, X. Martí, M. Barchuk, F. Sánchez et al., The poisson ratio in CoFe2O4 spinel thin films. Adv. Funct. Mater. 22(20), 4344–4351 (2012)

    Article  CAS  Google Scholar 

  34. Y.Y. Liao, Y.W. Li, Z.G. Hu, J.H. Chu, Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition. Appl. Phys. Lett. 100(7), 071905 (2012)

    Article  Google Scholar 

  35. P. Mills, J.L. Sullivan, A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 16(5), 723–732 (1983)

    Article  CAS  Google Scholar 

  36. V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS. J. Nucl. Mater. 335(3), 302–310 (2004)

    Article  CAS  Google Scholar 

  37. M. Acharya, C.R. Joshi, A. Gupta, Growth of samarium-substituted epitaxial bismuth ferrite films by chemical vapor deposition. Cryst. Growth Des. 23, 2065–2074 (2023)

    Article  CAS  Google Scholar 

  38. D. Leea, T. Jua, C.W. Choa, J. Leeb, H. Kimc, J.H. Wonb et al., Deposition-environment-dependent structural and magnetic property modification of [111]-oriented epitaxial CoFe2O4 films. Ceram. Int. 46, 19121–119126 (2020)

    Article  Google Scholar 

  39. S.J. Yu, W.M. Xu, H. Zhu, W.R. Qiu, Q.Y. Fu, L.B. Kong, Effect of sputtering power on structure and properties of ZTO films. J. Alloys Compd. 883, 160602 (2021)

    Article  Google Scholar 

  40. S. Iranshahi, S. Mosivand, Cobalt/graphene oxide nanocomposites: electro-synthesis, structural, magnetic, and electrical properties. Ceram. Int. 48, 12240–12254 (2022)

    Article  CAS  Google Scholar 

  41. Y.P. Zhao, R.M. Gamache, G.C. Wang et al., Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity. J. Appl. Phys. 89(2), 1325–1330 (2001)

    Article  CAS  Google Scholar 

  42. H.Y. Yi, J.H. Li, H.J. Yu, F. Li, X.Q. Bao, X.X. Gao, Evolution of the phase structure, magnetic domain structure, and magnetic properties of annealed Fe72Ga28 thin films. J. Alloys Compd. 893, 162306 (2022)

    Article  CAS  Google Scholar 

  43. R. Comes, M. Gu, M. Khokhlov et al., Microstructural and domain effects in epitaxial CoFe2O4 films on MgO with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 324(4), 524–527 (2012)

    Article  CAS  Google Scholar 

  44. H.S. Mund, B.L. Ahuja, Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method. Mater. Res. Bull. 85, 228–233 (2017)

    Article  CAS  Google Scholar 

  45. M. Coll, J.M. Montero Moreno, J. Gazquez, K. Nielsch, X. Obradors, T. Puig, Low temperature stabilization of nanoscale epitaxial spinel ferrite thin films by atomic layer deposition. Adv. Funct. Mater. 24(34), 5368–5374 (2014)

    Article  CAS  Google Scholar 

  46. A.V. Ramos, T.S. Santos, G.X. Miao, M.J. Guittet, J.B. Moussy, J.S. Moodera, Influence of oxidation on the spin-filtering properties of CoFe2O4 and the resultant spin polarization. Phys. Rev. B 78(18), 180402 (2008)

    Article  Google Scholar 

  47. Y. Cao, S. Cao, W. Ren et al., Magnetization switching of rare earth orthochromite CeCrO3. Appl. Phys. Lett. 104, 232405 (2014)

    Article  Google Scholar 

  48. R.K. Zheng, G.H. Wen, K.K. Fung, X.X. Zhang, Training effect of exchange bias in γ−Fe2O3 coated Fenanoparticles. Phys. Rev. B 69(21), 214431 (2004)

    Article  Google Scholar 

  49. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77(2), 94–397 (1996)

    Article  Google Scholar 

  50. B. Martínez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys. Rev. Lett. 80(1), 181–184 (1998)

    Article  Google Scholar 

  51. M. Gich, I. Fina, A. Morelli, F. Sanchez, M. Alexe, J. Gazquez et al., Multiferroic iron oxide thin films at room temperature. Adv. Mater. 26(27), 4645–4652 (2014)

    Article  CAS  Google Scholar 

  52. A. Thomasson, S. Cherifi, C. Lefevre, F. Roulland, B. Gautier, D. Albertini et al., Room temperature multiferroicity in Ga0.6Fe1.4O3:Mg thin films. J. Appl. Phys. 113(21), 214101 (2013)

    Article  Google Scholar 

  53. S. Liu, A.R. Akbashev, X. Yang, X. Liu, W. Li, L. Zhao et al., Hollandites as a new class of multiferroics. Sci. Rep. 4(1), 6203 (2014)

    Article  CAS  Google Scholar 

  54. P.D. Thang, N.H. Tiep, T.A. Ho, N.D. Co, N.T.M. Hong, Q.V. Dong et al., Electronic structure and multiferroic properties of (Y, Mn)-doped barium hexaferrite compounds. J. Alloys Compd. 867, 158794 (2021)

    Article  CAS  Google Scholar 

  55. Y. Yu, W.L. Li, Y.F. Hou, T.D. Zhang, Y. Feng, Y. Zhao et al., Existence of quasi-ferroelectricity in CoFe2O4 ferromagnetic films induced by Li+-Al3+ codopant. J. Alloys Compd. 689, 468–474 (2016)

    Article  CAS  Google Scholar 

  56. S.P. Pati, T. Taniyama, Voltage-driven strain-induced coexistence of both volatile and non-volatile interfacial magnetoelectric behaviors in LSMO/PMN-PT (0 0 1). J. Phys. D Appl. Phys. 53(5), 054003 (2020)

    Article  CAS  Google Scholar 

  57. M.I. Klinger, Two-phase polaron model of conduction in magnetite-like solids. J. Phys. C Solid State Phys. 8(21), 3595–3607 (1975)

    Article  Google Scholar 

  58. Y.M. Han, Y.Y. Liu, P. Zavalij, L. Salamanca-Riba, E. Cantando, R. Bergstrom et al., Magnetoelectric relaxation in rhombohedral LiNbO3-CoFe2O4. Appl. Phys. Lett. 100, 262907 (2012)

    Article  Google Scholar 

  59. A. Sundaresan, N.V. Ter-Oganessian, Magnetoelectric and multiferroic properties of spinels. J. Appl. Phys. 129, 060901 (2021)

    Article  CAS  Google Scholar 

  60. P.N.R. Shankar, S. Mishra, A. Sundaresan, Polar magnetic oxides from chemical ordering: a new class of multiferroics. APL Mater. 8, 040906 (2020)

    Article  Google Scholar 

  61. X.X. Chen, X.J. Zhu, W. Xiao, G. Liu, Y.P. Feng, J. Ding, R.W. Li, Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. ACS Nano 9(4), 4210–4218 (2015)

    Article  CAS  Google Scholar 

  62. S. Robbennolt, E. Menendez, A. Quintana, A. Gomez, S. Auffret, V. Baltz et al., Electric-field induced magneto-ionic control of magnetism in mesoporous cobalt ferrite thin films. Sci. Rep. 9, 10804 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Analysis and Testing Center of Tianjin University for the experimental data acquisition. The authors acknowledge the financial support from the Natural Science Foundation of Tianjin City, Science and Technology Planning Project of Tianjin City and National Natural Science Foundation of China.

Funding

This study was supported by Natural Science Foundation of Tianjin City (18JCYBJC85700 and 18JCZDJC30500), Science and Technology Planning Project of Tianjin City (20ZYQCGX00070), and National Natural Science Foundation of China (62001326).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by KS and LG. The first draft of the manuscript was written by KS. YH, KH, ZS, FW, HW, and KZ: reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yemei Han or Kailiang Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Shen, K., Guo, L. et al. Exploring room temperature multiferroicity in Mg0.3Co0.7Fe2O4 films. J Mater Sci: Mater Electron 34, 2181 (2023). https://doi.org/10.1007/s10854-023-11435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11435-1

Navigation