Skip to main content

Advertisement

Log in

Polymer nanocomposite film based piezoelectric nanogenerator for biomechanical energy harvesting and motion monitoring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the advancement in the wearable technologies such as, smart watches, electronic skin, and wearable portable device, scavenging the biomechanical energy from human movements have gained considerable attention for designing self-sustainable power system. Here, we have reported a flexible piezoelectric device that can be conformably adhered to the human body in order to harness the energy from diversification of touch and motion. For this, we have fabricated a polyvinyl difluoride (PVDF) polymer based flexible piezoelectric nanogenerator (PNG) device that can harness energy from various human motions and convert it to useful electrical energy. To further improve the performance of PVDF based nanogenerator, hydrothermally synthesized nanosheets of reduce graphene oxide (rGO) and boron doped rGO are embedded in PVDF matrix as a conductive nanofiller materials to enhance the device output performance. Among all fabricated devices based on pristine PVDF (P), rGO doped PVDF (PR) and, boron doped rGO (PBR), the latter generates a maximum voltage and power density of 13.8 V and ~ 42.3 µW/cm2 respectively, which is then used to light up series of commercially available LEDs. Finally, PBR film based PNG is demonstrated to harvest energy from different types of human motion which includes finger tapping, elbow bending, foot tapping, leg folding, and wrist movements. This device demonstrates the potential use of polymer nanocomposite films in self-powered wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. M. Zhou, M.S.H. Al-Furjan, J. Zou, W. Liu, A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 82, 3582–3609 (2018). https://doi.org/10.1016/j.rser.2017.10.102

    Article  Google Scholar 

  2. F. Mokhtari, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Piezofibers to smart textiles: a review on recent advances and future outlook for wearable technology. J. Mater. Chem. A 8, 9496–9522 (2020). https://doi.org/10.1039/D0TA00227E

    Article  CAS  Google Scholar 

  3. S. Li, J. Wang, W. Peng, L. Lin, Y. Zi, S. Wang, G. Zhang, Z.L. Wang, Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 7, 1602832 (2017). https://doi.org/10.1002/aenm.201602832

    Article  CAS  Google Scholar 

  4. X. Chen, Y. Song, Z. Su, H. Chen, X. Cheng, J. Zhang, M. Han, H. Zhang, Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy 38, 43–50 (2017). https://doi.org/10.1016/j.nanoen.2017.05.047

    Article  CAS  Google Scholar 

  5. Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi, F.I. Alzakia, D.J.J. Tay, L. Yang, X. Zhang, L. Suresh, Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 12, 616 (2021). https://doi.org/10.1038/s41467-021-20919-9

    Article  CAS  Google Scholar 

  6. S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, High-performance thermally conductive phase change composites by large‐size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31, 1905099 (2019). https://doi.org/10.1002/adma.201905099

    Article  CAS  Google Scholar 

  7. J. Wang, S. Zhou, Z. Zhang, D. Yurchenko, High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy. Convers. Manag. 181, 645–652 (2019). https://doi.org/10.1016/j.enconman.2018.12.034

    Article  Google Scholar 

  8. M. Liu, F. Qian, J. Mi, L. Zuo, Biomechanical energy harvesting for wearable and mobile devices: state-of-the-art and future directions. Appl. Energy 321, 119379 (2022). https://doi.org/10.1016/j.apenergy.2022.119379

    Article  Google Scholar 

  9. B. Dudem, D.H. Kim, L.K. Bharat, J.S. Yu, Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Appl. Energy 230, 865–874 (2018). https://doi.org/10.1016/j.apenergy.2018.09.009

    Article  CAS  Google Scholar 

  10. S. Siddiqui, H.B. Lee, D.I. Kim, L.T. Duy, A. Hanif, N.E. Lee, An omnidirectionally stretchable piezoelectric nanogenerator based on hybrid nanofibers and carbon electrodes for multimodal straining and human kinematics energy harvesting. Adv. Energy Mater. 8, 1701520 (2018). https://doi.org/10.1002/aenm.201701520

    Article  CAS  Google Scholar 

  11. P. Yingyong, P. Thainiramit, S. Jayasvasti, N. Thanach-Issarasak, D. Isarakorn, Evaluation of harvesting energy from pedestrians using piezoelectric floor tile energy harvester. Sens. Actuators A 331, 113035 (2021). https://doi.org/10.1016/j.sna.2021.113035

    Article  CAS  Google Scholar 

  12. Z. Liu, S. Zhang, Y. Jin, H. Ouyang, Y. Zou, X. Wang, L. Xie, Z. Li, Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semicond. Sci. Technol. 32, 064004 (2017). https://doi.org/10.1088/1361-6641/aa68d1

    Article  CAS  Google Scholar 

  13. S.H. Wankhade, S. Tiwari, A. Gaur, P. Maiti, PVDF—PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Rep. 6, 358–364 (2020). https://doi.org/10.1016/j.egyr.2020.02.003

    Article  Google Scholar 

  14. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005

    Article  CAS  Google Scholar 

  15. H. Su, X. Wang, C. Li, Z. Wang, Y. Wu, J. Zhang, Y. Zhang, C. Zhao, J. Wu, H. Zheng, Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application. Nano Energy 83, 105809 (2021). https://doi.org/10.1016/j.nanoen.2021.105809

    Article  CAS  Google Scholar 

  16. L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78, 105251 (2020). https://doi.org/10.1016/j.nanoen.2020.105251

    Article  CAS  Google Scholar 

  17. M.A. Johar, J.-H. Kang, M.A. Hassan, S.-W. Ryu, A scalable, flexible and transparent GaN based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting. Appl. Energy 222, 781–789 (2018). https://doi.org/10.1016/j.apenergy.2018.04.038

    Article  CAS  Google Scholar 

  18. S. Badatya, D.K. Bharti, N. Sathish, A.K. Srivastava, M.K. Gupta, Humidity sustainable hydrophobic poly (vinylidene fluoride)-carbon nanotubes foam based piezoelectric nanogenerator. ACS Appl. Mater. Interfaces 13, 27245–27254 (2021). https://doi.org/10.1021/acsami.1c02237

    Article  CAS  Google Scholar 

  19. A. Anand, D. Meena, K.K. Dey, M.C. Bhatnagar, Enhanced piezoelectricity properties of reduced graphene oxide (RGO) loaded polyvinylidene fluoride (PVDF) nanocomposite films for nanogenerator application. J. Polym. Res. 27, 1–11 (2020). https://doi.org/10.1007/s10965-020-02323-x

    Article  CAS  Google Scholar 

  20. X. Hu, Z. Ding, L. Fei, Y. Xiang, Y. Lin, Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 54, 6401–6409 (2019). https://doi.org/10.1007/s10853-019-03339-5

    Article  CAS  Google Scholar 

  21. S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7, 10655–10666 (2015). https://doi.org/10.1039/C5NR02067K

    Article  CAS  Google Scholar 

  22. S. Rana, V. Singh, B. Singh, Tailoring the output performance of PVDF-based piezo–tribo hybridized nanogenerators via B, N-codoped reduced graphene oxide. ACS Appl. Electron. Mater. 4, 5893–5904 (2022). https://doi.org/10.1021/acsaelm.2c01085

    Article  CAS  Google Scholar 

  23. J.-H. Ji, B.S. Kim, J. Kang, J.-H. Koh, Improved output performance of hybrid composite films with nitrogen-doped reduced graphene oxide. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.12.271

    Article  Google Scholar 

  24. S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun. 52, 10988–10991 (2016). https://doi.org/10.1039/C6CC04052G

    Article  CAS  Google Scholar 

  25. N. Venkatesan, K.S. Archana, S. Suresh, R. Aswathy, M. Ulaganthan, P. Periasamy, P. Ragupathy, Boron-doped graphene as efficient electrocatalyst for zinc–bromine redox flow batteries. ChemElectroChem 6, 1107–1114 (2019). https://doi.org/10.1002/celc.201801465

    Article  CAS  Google Scholar 

  26. H. Fang, C. Yu, T. Ma, J. Qiu, Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chem. Commun. 50, 3328–3330 (2014). https://doi.org/10.1039/C3CC48258H

    Article  CAS  Google Scholar 

  27. Z. Fan, Y. Li, X. Li, L. Fan, S. Zhou, D. Fang, S. Yang, Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70, 149–156 (2014). https://doi.org/10.1016/j.carbon.2013.12.085

    Article  CAS  Google Scholar 

  28. R.S. Sahu, K. Bindumadhavan, R. Doong, Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene. Environ. Sci. 4, 565–576 (2017). https://doi.org/10.1039/C6EN00575F

    Article  CAS  Google Scholar 

  29. R.N. Muthu, S.S.V. Tatiparti, Electrode and symmetric supercapacitor device performance of boron-incorporated reduced graphene oxide synthesized by electrochemical exfoliation. Energy Storage 2, e134 (2020). https://doi.org/10.1002/est2.134

    Article  CAS  Google Scholar 

  30. L.K. Putri, B.-J. Ng, W.-J. Ong, H.W. Lee, W.S. Chang, S.-P. Chai, Heteroatom nitrogen-and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution. ACS Appl. Mater. Interfaces 9, 4558–4569 (2017). https://doi.org/10.1021/acsami.6b12060

    Article  CAS  Google Scholar 

  31. M. Endo, C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M.J. Matthews, S.D.M. Brown, M.S. Dresselhaus, Structural analysis of the B-doped mesophase pitch-based graphite fibers by Raman spectroscopy. Phys. Rev. B 58, 8991 (1998). https://doi.org/10.1103/PhysRevB.58.8991

    Article  CAS  Google Scholar 

  32. Y. Hishiyama, H. Irumano, Y. Kaburagi, Y. Soneda, Structure, Raman scattering, and transport properties of boron-doped graphite. Phys. Rev. B 63, 245406 (2001)

    Article  Google Scholar 

  33. J. Li, X. Li, D. Xiong, L. Wang, D. Li, Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors. Appl. Surf. Sci. 475, 285–293 (2019). https://doi.org/10.1016/j.apsusc.2018.12.152

    Article  CAS  Google Scholar 

  34. T. Zhu, S. Li, B. Ren, L. Zhang, L. Dong, L. Tan, Plasma-induced synthesis of boron and nitrogen co-doped reduced graphene oxide for super-capacitors. J. Mater. Sci. 54, 9632–9642 (2019)

    Article  CAS  Google Scholar 

  35. W. Cheng, X. Liu, N. Li, J. Han, S. Li, S. Yu, Boron-doped graphene as a metal-free catalyst for gas-phase oxidation of benzyl alcohol to benzaldehyde. RSC Adv. 8, 11222–11229 (2018). https://doi.org/10.1039/C8RA00290H

    Article  CAS  Google Scholar 

  36. Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, Boric acid assisted reduction of graphene oxide: a promising material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 18860–18866 (2016). https://doi.org/10.1021/acsami.6b04774

    Article  CAS  Google Scholar 

  37. V. Singh, D. Meena, H. Sharma, A. Trivedi, B. Singh, Investigating the role of chalcogen atom in the piezoelectric performance of PVDF/TMDCs based flexible nanogenerator. Energy 239, 122125 (2022). https://doi.org/10.1016/j.energy.2021.122125

    Article  CAS  Google Scholar 

  38. B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 320, 339–347 (2014). https://doi.org/10.1016/j.apsusc.2014.09.030

    Article  CAS  Google Scholar 

  39. X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017). https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  40. F. Wang, H. Sun, H. Guo, H. Sui, Q. Wu, X. Liu, D. Huang, High performance piezoelectric nanogenerator with silver nanowires embedded in polymer matrix for mechanical energy harvesting. Ceram. Int. 47, 35096–35104 (2021). https://doi.org/10.1016/j.ceramint.2021.09.052

    Article  CAS  Google Scholar 

  41. P. Martins, A. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  42. R. Bhunia, S. Gupta, B. Fatma, Prateek, R.K. Gupta, A. Garg, Milli-watt power harvesting from dual triboelectric and piezoelectric effects of multifunctional green and robust reduced graphene oxide/P (VDF-TrFE) composite flexible films. ACS Appl. Mater. Interfaces 11, 38177–38189 (2019). https://doi.org/10.1021/acsami.9b13360

    Article  CAS  Google Scholar 

  43. S. Ojha, S. Paria, S.K. Karan, S.K. Si, A. Maitra, A.K. Das, L. Halder, A. Bera, A. De, B.B. Khatua, Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the β-phase of PVDF for flexible piezoelectric nanogenerators. Nanoscale 11, 22989–22999 (2019). https://doi.org/10.1039/C9NR08315D

    Article  CAS  Google Scholar 

  44. F. Mokhtari, G.M. Spinks, S. Sayyar, J. Foroughi, Dynamic mechanical and creep behaviour of meltspun pvdf nanocomposite fibers. Nanomaterials 11, 2153 (2021). https://doi.org/10.3390/nano11082153

    Article  CAS  Google Scholar 

  45. M.T. Ong, E.J. Reed, Engineered piezoelectricity in graphene. ACS nano 6, 1387–1394 (2012). https://doi.org/10.1021/nn204198g

    Article  CAS  Google Scholar 

  46. K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52, 153–162 (2018). https://doi.org/10.1016/j.nanoen.2018.07.053

    Article  CAS  Google Scholar 

  47. S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015). https://doi.org/10.1038/ncomms9975

    Article  CAS  Google Scholar 

  48. Y. Zou, V. Raveendran, J. Chen, Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77, 105303 (2020). https://doi.org/10.1016/j.nanoen.2020.105303

    Article  CAS  Google Scholar 

  49. T. He, H. Wang, J. Wang, X. Tian, F. Wen, Q. Shi, J.S. Ho, C. Lee, Self-sustainable wearable textile nano‐energy nano‐system (NENS) for next‐generation healthcare applications. Adv. Sci. 6, 1901437 (2019). https://doi.org/10.1002/advs.201901437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Council of Scientific and Industrial Research (CSIR) with award no (08/133(0042)/2019-EMR-I) for providing the fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SR: conceptualization, data curation, methadology, fabrication, writing original draft. BS: supervision, writing review & editing.

Corresponding author

Correspondence to Bharti Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Singh, B. Polymer nanocomposite film based piezoelectric nanogenerator for biomechanical energy harvesting and motion monitoring. J Mater Sci: Mater Electron 34, 1764 (2023). https://doi.org/10.1007/s10854-023-11207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11207-x

Navigation