Skip to main content

Advertisement

Log in

Electrospun nanofibers doped with PVDF and PLZT nanoparticles for potential biomedical and energy harvesting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multifunctional composite nanofiber membranes of Polyvinylidene fluoride and polyvinylidene difluoride (PVDF) and PVDF embedded with La3+ ion substituted for Pb2+ ion in Lead zirconate titanate (Pb1−xLax(ZryTi1−y)1−x/4O3) (PLZT) nanoparticles were fabricated using the electrospinning technique for the present investigation. The resulting composite nanofiber membranes were characterized for their microstructure, electrical properties, and mechanical strength. The observed PVDF/PLZT electrospun membranes characteristics demonstrate the presence of β-phase, as shown by FTIR and Raman spectroscopy. Furthermore, the pyroelectric and dielectric properties depend on the concentration of embedded PLZT nanoparticles, porosity, and electroactive β-phase content. The samples were subjected to stress under compression, shear, and torsion for their response, which indicates that the composites can be used for designing capacitive force-sensing devices. Based on the pyroelectric coefficient and real and imaginary parts of the dielectric constant, appropriate figures of merit were calculated to determine an optimum value for specific functionalities. Due to the vast range of potential applications, a brief overview of parametric considerations is discussed for designing flexible multifunctional sensor platforms, followed by future pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Most of the data are available in the Results and Discussion section. Additional supporting information is available from the authors upon reasonable request.

References

  1. ST Microelectronics, Life Augmented—MEMS and Sensors, https://www.st.com/en/mems-and-sensors.html. Accessed 20 July 2023

  2. J. Xue, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5315 (2019)

    Article  CAS  Google Scholar 

  3. N. Bölgen, D. Demir, M. Aşık, B. Sakım, A. Vaseashta, Introduction and fundamentals of electrospinning, in Electrospun Nanofibers. ed. by A. Vaseashta, N. Bölgen (Springer, Cham, 2022)

    Google Scholar 

  4. A. Vaseashta, Loaded electrospun nanofibers: chemical and biological defense, in Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security - A: Chemistry and Biology. ed. by J. Bonča, S. Kruchinin (Springer, Cham, 2018)

    Google Scholar 

  5. A. Vaseashta, D. Demir, B. Sakım, M. Aşık, N. Bölgen, Hierarchical integration of 3D printing and electrospinning of nanofibers for rapid prototyping, in Electrospun Nanofibers. ed. by A. Vaseashta, N. Bölgen (Springer, Cham, 2022)

    Chapter  Google Scholar 

  6. N. Ashammakhi et al., Electrospinning and three-dimensional (3D) printing for biofabrication, in Electrospun Nanofibers. ed. by A. Vaseashta, N. Bölgen (Springer, Cham, 2022)

    Google Scholar 

  7. Z. Zhang et al., Integration of electrospinning and 3D printing technology, in Electrospun Nanofibers. ed. by A. Vaseashta, N. Bölgen (Springer, Cham, 2022)

    Google Scholar 

  8. A. Vaseashta, I. Stamatin, Electrospun polymers for controlled release of drugs, vaccine delivery, and system-on-fibers. J. Optoelectron. Adv. Mater. 9, 1606–1613 (2007)

    CAS  Google Scholar 

  9. H. Zarafshan, M. Mojarab, M.M. Zangeneh, P. Moradipour, F. Bagheri, F. Aghaz, E. Arkan, A novel biocompatible and biodegradable electrospun nanofibers containing M. Neglectum: antifungal properties and in vitro investigation. IEEE Trans. Nanobiosci. 21(4), 520–528 (2022). https://doi.org/10.1109/TNB.2021.3128407

    Article  CAS  Google Scholar 

  10. H.M. Hashem, A. Motawea, A.H. Kamel et al., Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Sci. Rep. 12, 18037 (2022). https://doi.org/10.1038/s41598-022-22878-7

    Article  CAS  Google Scholar 

  11. N. Bölgen, A. Vaseashta, Nanocomposites of electrospun polymeric materials as protective textiles against chemical and biological hazards, in Advanced Nanotechnologies for Detection and Defence against CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics. ed. by P. Petkov, D. Tsiulyanu, C. Popov, W. Kulisch (Springer, Dordrecht, 2018)

    Google Scholar 

  12. X. Hu, M. You, N. Yi, X. Zhang, Y. Xiang, Enhanced piezoelectric coefficient of PVDF-TrFE films via in situ polarization. Front. Energy Res. 9, 2021 (2021). https://doi.org/10.3389/fenrg.2021.621540

    Article  Google Scholar 

  13. S. Palwai, A. Batra, S. Kotru, A. Vaseashta, Electrospun polyvinylidene fluoride nanofiber membrane-based flexible capacitive tactile sensors for biomedical applications. Surf. Eng. Appl. Electrochem. 58, 194–201 (2022). https://doi.org/10.3103/S1068375522020089

    Article  Google Scholar 

  14. X. Dai, J. Niu, Z. Ren, X. Sun, S. Yan, Effects of nanoporous anodic alumina oxide on the crystallization and melting behavior of poly(vinylidene Fluoride). J. Phys. Chem. B 120, 843–850 (2016). https://doi.org/10.1021/acs.jpcb.5b11178

    Article  CAS  Google Scholar 

  15. A.J. Lovinger, T. Furukawa, G.T. Davis, M.G. Broadhurst, Crystallographic changes characterizing the curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2 oriented or poled samples. Polymer 24, 1233–1239 (1983). https://doi.org/10.1016/0032-3861(83)90051-4

    Article  CAS  Google Scholar 

  16. R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym. J. 3, 600–610 (1972). https://doi.org/10.1295/polymj.3.600

    Article  CAS  Google Scholar 

  17. T. Masahiko, H. Sumio, M. Susumu, O. Nobuyuki, Some aspects of piezoelectricity and pyroelectricity in uniaxially stretched poly(vinylidene fluoride). J. Appl. Phys. 48, 513 (1977). https://doi.org/10.1063/1.323695

    Article  Google Scholar 

  18. W.M. Prest, D.J. Luca, The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. J. Appl. Phys. 49, 5042–5047 (1978). https://doi.org/10.1063/1.324439

    Article  CAS  Google Scholar 

  19. N.C. Banik, F.P. Boyle, T.J. Sluckin, P.L. Taylor, S.K. Tripathy, A.J. Hopfinger, Theory of structural phase transitions in crystalline poly(vinylidene fluoride). J. Chem. Phys. 72, 3191–3196 (1980). https://doi.org/10.1063/1.439552

    Article  CAS  Google Scholar 

  20. G.T. Davis, J.E. Mckinney, M.G. Broadhurst, S.C. Roth, Electric-field-induced phase changes in poly(vinylidene fluoride). J. Appl. Phys. 49, 4998–5002 (1978). https://doi.org/10.1063/1.324446

    Article  CAS  Google Scholar 

  21. M. Smith, S. Kar-Narayan, Piezoelectric polymers: theory, challenges and opportunities. Int. Mater. Rev. 67(1), 65–88 (2022). https://doi.org/10.1080/09506608.2021.1915935

    Article  CAS  Google Scholar 

  22. C. Zhang, H. Sun, Q. Zhu, Preparation and property enhancement of poly(vinylidene fluoride) (PVDF)/lead zirconate titanate (PZT) composite piezoelectric films. J. Electron. Mater. 50, 6426–6437 (2021). https://doi.org/10.1007/s11664-021-09172-4

    Article  CAS  Google Scholar 

  23. J.X. Chen, J.W. Li, C.C. Cheng, C.W. Chiu, Piezoelectric property enhancement of PZT/Poly(vinylidene fluoride -co-trifluoro ethylene) hybrid films for flexible piezoelectric energy harvesters. ACS Omega 7(1), 793–803 (2021). https://doi.org/10.1021/acsomega.1c05451

    Article  CAS  Google Scholar 

  24. S. Sukumaran, S. Chatbouri, D. Rouxel, E. Tisserand, F. Thiebaud, T. Ben-Zineb, Recent advances in flexible PVDF-based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 32(7), 746–780 (2021). https://doi.org/10.1177/1045389X20966058

    Article  CAS  Google Scholar 

  25. J.C. Sampson, A. Batra, M.E. Edwards, A. Vaseashta et al., On the mechanisms of DC conduction in electrospun PLZT/PVDF nanocomposite membranes. J. Mater. Sci. 57, 5084–5096 (2022). https://doi.org/10.1007/s10853-022-06958-7

    Article  CAS  Google Scholar 

  26. X. Yang, Y. Wang, X. Qing, A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens. Actuators A 299, 111579 (2019). https://doi.org/10.1016/j.sna.2019.111579

    Article  CAS  Google Scholar 

  27. S. Hosseini, H. Hajghassem, M.H.F. Ghazani, A sensitive and flexible interdigitated capacitive strain gauge based on carbon nanofiber/PANI/silicone rubber nanocomposite for body motion monitoring. Mater. Res. Express 9(5), 065605 (2022). https://doi.org/10.1088/2053-1591/ac7851

    Article  Google Scholar 

  28. D. Ponnamma, M.M. Chamakh, A.M. Alahzm, N. Salim, N. Hameed, M.A.A. AlMaadeed, Core-shell nanofibers of polyvinylidene fluoride-based nanocomposites as piezoelectric nanogenerators. Polymers 12, 2344 (2020). https://doi.org/10.3390/polym12102344

    Article  CAS  Google Scholar 

  29. A.N. Nguyen, J. Solard, H.T.T. Nong, C. Ben-Osman, A. Gomez, V. Bockelée, S. Tencé-Girault, N. Schoenstein, M. Simón-Sorbed, A.E. Carrillo, S. Mercone, Spin coating and micro-patterning optimization of composite thin films based on PVDF. Materials (Basel) 13(6), 1342 (2020). https://doi.org/10.3390/ma13061342

    Article  CAS  Google Scholar 

  30. A. Vaseashta, Controlled formation of multiple Taylor cones in electrospinning process. Appl. Phys. Lett. 90, 093115 (2007). https://doi.org/10.1063/1.2709958

    Article  CAS  Google Scholar 

  31. C.C. Jin, X.C. Liu, C.H. Liu, H.L. Hwang, Q. Wang, Preparation and structure of aligned PLZT nanowires and their application in energy harvesting. Appl. Surf. Sci. 447, 430–436 (2018). https://doi.org/10.1016/j.apsusc.2018.03.251

    Article  CAS  Google Scholar 

  32. C.J.L. Constantino, A.E. Job, R.D. Simões, J.A. Giacometti, V. Zucolotto, O.N. Oliveira, G. Gozzi, D.L. Chinaglia, Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl. Spectrosc. 59(3), 275–279 (2005)

    Article  CAS  Google Scholar 

  33. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly(vinylidene fluoride). Polymers 10(2), 228 (2018)

    Article  Google Scholar 

  34. M.A. Hari, S.C. Karumuthil, L. Rajan, Optimization of PVDF nanocomposite based flexible piezoelectric tactile sensors: a comparative investigation. Sens. Actuators A 353, 114215 (2023). https://doi.org/10.1016/j.sna.2023.114215

    Article  CAS  Google Scholar 

  35. S. You, J.K. Eshraghian, H.C. Iu, K. Cho, Low-power wireless sensor network using fine-grain control of sensor module power mode. Sensors 21, 3198 (2021). https://doi.org/10.3390/s21093198

    Article  Google Scholar 

  36. A.K. Batra, M.D. Aggarwal, M.E. Edwards, A.S. Bhalla, Present status of polymer: ceramic composites for pyroelectric infrared detectors. Ferroelectrics 366, 84–12 (2008)

    Article  CAS  Google Scholar 

  37. C.R. Bowen, J. Taylor, E.L. Boulbar, D. Zabek, V. Yu Topolov, A modified figure of merit for pyroelectric energy harvesting. Mater. Lett. 138, 243–246 (2015). https://doi.org/10.1016/j.matlet.2014.10.004

    Article  CAS  Google Scholar 

  38. A.K. Batra, A. Alomari, Power Harvesting via Smart Materials, PM277 (SPIE, Bellingham, 2017)

    Book  Google Scholar 

  39. A. Vaseashta, A. Batra, in Electrospun Nanofibers of High-Performance Electret Polymers for Tactile Sensing and Wearable Electronics, ed. by A. Vaseashta, M.E. Achour, M. Mabrouki, D. Fasquelle, A. Tachafine, Proceedings of the Sixth International Symposium on Dielectric Materials and Applications (ISyDMA’6). Springer, Cham (2022)

  40. H. Guclu, H. Kasim, M. Yazici, Investigation of the optimum vibration energy harvesting performance of electrospun PVDF/BaTiO3 nanogenerator. J. Compos. Mater. 53(3), 409–424 (2022)

    Article  Google Scholar 

  41. G. Kaur, D.S. Rana, Dielectric spectroscopic investigation and electrical conduction mechanism of PVDF-NiO nanocomposite thin films. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-05209-2

    Article  Google Scholar 

  42. S. Kohli, A. Saini, A.J. Pillai, MEMS-based capacitive sensors simulation for healthcare and biomedical applications. Int. J. Sci. Eng. Res. 4, 1855–1862 (2013)

    Google Scholar 

  43. B.F. Monea, E.I. Ionete, S.I. Spiridon, A. Leca, A. Stanciu, E. Petre, A. Vaseashta, Single wall carbon nanotubes based cryogenic temperature sensor platforms. Sensors 17, 2071 (2017). https://doi.org/10.3390/s17092071

    Article  CAS  Google Scholar 

  44. N. Chamankar, R. Khajavi, A.A. Yousefi, A. Rashidi, F. Golestanifard, A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 46(12), 19669–19681 (2020). https://doi.org/10.1016/j.ceramint.2020.03.210

    Article  CAS  Google Scholar 

  45. L. Li, J. Zhu, W. Luo, Y. Li, Improved ferroelectric properties of (111)-oriented PbZr0.52Ti0.48O3 thin films on SrRuO3/Pt hybrid electrodes. Ferroelectrics 406, 121–129 (2010)

    Article  CAS  Google Scholar 

  46. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  CAS  Google Scholar 

  47. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  CAS  Google Scholar 

  48. R.K. Roy, Design of Experiments Using The Taguchi Approach: 16 Steps to Product and Process Improvement (Wiley, New York, 2001)

    Google Scholar 

  49. A. Vaseashta, Life Cycle Analysis of Nanoparticles Risk, Assessment, and Sustainability (DEStech Publications, Inc., Lancaster, 2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M.D. Aggarwal for his support and encouragement. Thanks to Mr. E. Curtis for the fabrication of mechanical fixtures used in the present work. The authors acknowledge Mr. R. Paul for his technical assistance with scanning electron microscopy.

Funding

This work was partly supported by the Title III program under Historically Black Graduate Institutions (HBGI) programs at Alabama Agricultural and Mechanical University, USA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by JS, AD, and JC. The first draft of the manuscript was written, edited, and finalized by AB and AV. All authors commented on previous versions of the manuscript. All authors have read and approved the final and revised manuscript.

Corresponding author

Correspondence to Ashok Vaseashta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional review board

Human subjects were not involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batra, A., Sampson, J., Davis, A. et al. Electrospun nanofibers doped with PVDF and PLZT nanoparticles for potential biomedical and energy harvesting applications. J Mater Sci: Mater Electron 34, 1654 (2023). https://doi.org/10.1007/s10854-023-11066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11066-6

Navigation