Skip to main content
Log in

Impact of calcination temperature on the structural, electrical, and dielectric properties of sol–gel synthesized Ni0.6Mg0.2Co0.2FeCrO4 spinel ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The impact of calcination temperature on the structural, electrical, and dielectric properties of Ni0.6Mg0.2Co0.2FeCrO4 spinel ferrites was investigated in this work. The sol–gel method was used to prepare two different samples (S850 and S950) at calcination temperatures of 850 °C and 950 °C, respectively. We used thermogravimetric analysis to investigate weight loss versus temperature and spinel phase formation. The average grain size and unit cell parameters increased with increasing calcination temperature. Grain and grain boundary contributions were found to govern the conduction process in the samples, as shown by Nyquist diagram modeling. The impedance and modulus curves revealed that the samples present dielectric relaxation phenomenon with non-Debye type. The CBH model has been used to explain the conduction process. As the grain size increased with rising calcination temperature, the activation energies decreased from 0.18 to 0.12 eV for S850 and S950, respectively. The conductivity isotherms were found to be almost merged into a single master curve according to Summerfield scaling. The high electrical resistivity of the Ni0.6Mg0.2Co0.2FeCrO4 samples makes them suitable for use in microwave absorption devices. Furthermore, the samples show low dielectric constants and dielectric losses at higher frequencies which is beneficial for their use in high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The corresponding author is willing to provide the data that support this study upon a reasonable request.

References

  1. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M.S. Niasari, Int. J. Hydrogen Energy 47, 14319 (2022)

    Article  CAS  Google Scholar 

  2. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M.H. Oghaz, M.S. Niasari, J. Am. Ceram. Soc. 104, 2952 (2021)

    Article  CAS  Google Scholar 

  3. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M.S. Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  4. S.R. Yousefi, A. Sobhani, H.A. Alshamsic, M.S. Niasar, RSC Adv. 11, 11500 (2021)

    Article  CAS  Google Scholar 

  5. K. Huang, J. Liu, L. Wang, G. Chang, R. Wang, M. Lei, Y. Wang, Y. He, Appl. Surf. Sci. 487, 1145 (2019)

    Article  CAS  Google Scholar 

  6. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Sep. Purif. Technol. 188, 399 (2017)

    Article  CAS  Google Scholar 

  7. S.T. Fardood, R. Forootan, F. Moradnia, Z. Afshari, A. Ramazani, Mater. Res. Express 7, 015086 (2020)

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, D. Ghanbari, M.S. Niasari, M. Hassanpour, J. Mater. Sci.: Mater. Electron. 27, 1244 (2016)

    CAS  Google Scholar 

  9. S.R. Yousefi, D. Ghanbari, M.S. Niasari, J. Nanostruct. 6, 77 (2016)

    Google Scholar 

  10. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, M.S. Niasari, Arab. J. Chem. 16, 104579 (2023)

    Article  CAS  Google Scholar 

  11. Y. Gao, Y. Wu, H. Lu, C. Chen, Y. Liu, X. Bai, L. Yang, W.W. Yu, Q. Dai, Y. Zhang, Nano Energy 59, 517 (2019)

    Article  CAS  Google Scholar 

  12. S.A. Kulkarni, S.G. Mhaisalkar, N. Mathews, P.P. Boix, Small methods 3, 1800231 (2019)

    Article  Google Scholar 

  13. Y.D. Kolekar, L. Sanchez, E.J. Rubio, C.V. Ramana, Solid State Commun. 184, 34 (2014)

    Article  CAS  Google Scholar 

  14. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J App Phys. 112, 084321 (2012)

    Article  Google Scholar 

  15. Z. Gao, B. Xua, M. Ma, A. Feng, Y. Zhang, X. Liu et al., Composite B 179, 107417 (2019)

    Article  CAS  Google Scholar 

  16. J. Wanga, B. Wang, A. Feng, Z. Jia, G. Wu, J Alloys Compd. 834, 155092 (2020)

    Article  Google Scholar 

  17. X. Zhou, C. Zhang, M. Zhang, A. Feng, S. Qu, Y. Zhang et al., Composite A 127, 105627 (2019)

    Article  CAS  Google Scholar 

  18. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang et al., Chem. Eng. J. 333, 519 (2018)

    Article  CAS  Google Scholar 

  19. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Powder Technol. 278, 189 (2015)

    Article  CAS  Google Scholar 

  20. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  21. W. Zhang, A. Sun, X. Zhao, X. Pan, Y. Han, N. Suo et al., J Alloys Compd. 816, 152501 (2020)

    Article  CAS  Google Scholar 

  22. J. Pei, Z. Wang, Y. Gao, H. Zhang, Curr. Appl. Phys. 19, 440 (2019)

    Article  Google Scholar 

  23. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloys Compd. 615, 553 (2014)

    Article  CAS  Google Scholar 

  24. P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, B.K. Chougule, J. Alloys Compd. 475, 926 (2009)

    Article  CAS  Google Scholar 

  25. S.A.S. Ebrahimi, S.M. Masoudpanah, J. Magn. Magn. Mater. 357, 77 (2014)

    Article  Google Scholar 

  26. N. Kouki, S. Hcini, M. Boudard, R. Aldawasa, A. Dhahri, RSC Adv. 9, 1990 (2019)

    Article  CAS  Google Scholar 

  27. S. Hcini, N. Kouki, A. Omri, A. Dhahri, M.L. Bouazizi, J. Magn. Magn. Mater. 464, 91 (2018)

    Article  CAS  Google Scholar 

  28. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrogen Energy 44, 24005 (2019)

    Article  CAS  Google Scholar 

  29. N. Mechi, A. Mallah, S. Hcini, M.L. Bouazizi, M. Boudard, A. Dhahri, J. Supercond. Nov. Magn. 33, 1547 (2020)

    Article  CAS  Google Scholar 

  30. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, J. Mater. Sci.: Mater. Electron. 31, 14986 (2020)

    CAS  Google Scholar 

  31. Y.Ş Asar, Ö. Sevgili, Ş Altındal, J. Mater. Sci.: Mater. Electron. 34, 893 (2023)

    Google Scholar 

  32. İ Taşçıoğlu, Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, J. Electron. Mater. 49, 3720 (2020)

    Article  Google Scholar 

  33. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Physica B 587, 412122 (2020)

    Article  CAS  Google Scholar 

  34. A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, A.R. Khan, I. Ali, H.M.T. Farid, T. Ghrib, S.R. Ejaz, R.Y. Khosa, J. Mater. Res. Technol. 11, 158 (2021)

    Article  CAS  Google Scholar 

  35. K.Y. Butt, S. Aman, A.A. AlObaid, T.I. Al-Muhimeed, A. Rehman, H.H. Hegazy, N. Ahmad, A.R. Khan, S.R. Ejaz, H.M.T. Farid, Appl. Phys. A 127, 714 (2021)

    Article  CAS  Google Scholar 

  36. E.J.W. Verwey, J.H. De Boer, Rec. Trans. Chim. Des Pays-Bas. 55, 531 (1936)

    Article  CAS  Google Scholar 

  37. K.M. Batoo, M.S. Abd El-Sadek, J. Alloys Compd. 566, 112 (2013)

    Article  CAS  Google Scholar 

  38. M.A. Gabal, J. Phys. Chem. Sol. 64, 1375 (2003)

    Article  CAS  Google Scholar 

  39. M. Anis-ur-Rehman, G. Asghar, J. Alloys Compd. 509, 435 (2011)

    Article  CAS  Google Scholar 

  40. A. Lakshman, P.S.V.S. Rao, B.P. Rao, B.P. Rao, K.H. Rao, J. Phys. D 38, 673 (2005)

    Article  CAS  Google Scholar 

  41. M. Hashim, Alimuddin, S. Kumar, S.E. Shirsath, R.K. Kotnala, H. Chung, and R. Kumar, Powder Technol. 229, 37 (2012).

  42. M. Naeem, N.A. Shahb, I.H. Gul, A. Maqsood, J. Alloys Compd. 487, 739 (2009)

    Article  CAS  Google Scholar 

  43. H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, J. Alloys Compd. 650, 116 (2015)

    Article  CAS  Google Scholar 

  44. L.J. Berchmans, R. KalaiSelvan, P.N.S. Kumar, C.O. Augustin, J. Magn. Magn. Mater. 279, 103 (2004)

    Article  CAS  Google Scholar 

  45. M.A. Gabal, Y.M. Al Angari, H.M. Zaki, J. Magn. Magn. Mater. 363, 6 (2014)

    Article  CAS  Google Scholar 

  46. M.A. El Hiti, J. Phys. D 29, 501 (1996)

    Article  CAS  Google Scholar 

  47. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, A.S. Roy, A. Parveen, P. Bhatt, S. Kumar, R.B. Jotania, R. Kumar, Alimuddin, J. Alloys Compd. 602, 150 (2014)

  48. A.K.M.A. Hossain, M.R. Amin, H. Tanaka, J. Magn. Magn. Mater. 334, 124 (2013)

    Article  Google Scholar 

  49. M.A. El Hiti, J. Magn. Magn. Mater. 164, 187 (1996)

    Article  CAS  Google Scholar 

  50. M.H. Dhaou, Phase Transit. 91, 586 (2018)

    Article  CAS  Google Scholar 

  51. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Ceram Int. 46, 8640 (2020)

    Article  CAS  Google Scholar 

  52. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  53. R.P. Patil, P.P. Hankare, K.M. Garadkar, R. Sasikala, J. Alloys Compd. 523, 66 (2012)

    Article  CAS  Google Scholar 

  54. M. Rahimi, P. Kameli, M. Ranjbar, H. Salamati, J. Nanopart. Res. 15, 1865 (2013)

    Article  Google Scholar 

  55. A. Gholizadeh, E. Jafari, J. Magn. Magn. Mater. 422, 328 (2017)

    Article  CAS  Google Scholar 

  56. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, J. Mater. Sci.: Mater. Electron. 29, 6879 (2018)

    CAS  Google Scholar 

  57. N. Elghoul, M. Wali, S. Kraiem, H. Rahmouni, E. Dhahri, K. Khirouni, Physica B 478, 108 (2015)

    Article  CAS  Google Scholar 

  58. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 8 (2017)

    Article  Google Scholar 

  59. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Ceram. Int. 45, 16458 (2019)

    Article  CAS  Google Scholar 

  60. D. Johnson, ZView: A Software Program for IES Analysis. Version 2.8 (Scribner Associates Inc., Southern Pines, 2008)

    Google Scholar 

  61. R. Charguia, S. Hcini, M. Boudard, A. Dhahri, J. Mater. Sci.: Mater. Electron. 30, 2975 (2019)

    CAS  Google Scholar 

  62. M.K. Raju, M.R. Raju, K. Samatha, J. Optoelectron. Adv. Mater. 17, 1075 (2015)

    CAS  Google Scholar 

  63. A. Candan, A.K. Kushwah, Mater. Today Commun. 27, 102246 (2021)

    Article  CAS  Google Scholar 

  64. A.R. Chavan, J.S. Kounsalye, R.R. Chilwar, S.B. Kale, K.M. Jadhav, J. Alloys Compd. 769, 1132 (2018)

    Article  CAS  Google Scholar 

  65. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  66. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  67. M. Junaid, I. Kousar, S. Gulbadan, M.A. Khan, M.A. Yousuf, M.M. Baig et al., Physica B 641, 414120 (2022)

    Article  CAS  Google Scholar 

  68. K. Hussain, N. Amin, M.I. Arshad, Ceram. Int. 47, 3401 (2021)

    Article  CAS  Google Scholar 

  69. X. Guo, W. Sigle, J. Fleig, J. Maier, Solid State Ion. 154–155, 555 (2002)

    Article  Google Scholar 

  70. R.N. Bhowmik, A.G. Lone, J. Alloys Compd. 680, 31 (2016)

    Article  CAS  Google Scholar 

  71. B. Li, Z. Liu, Y.D. Liu, Y. Liang, Polymer 256, 125201 (2022)

    Article  CAS  Google Scholar 

  72. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Phase Transit. 91, 316 (2018)

    Article  CAS  Google Scholar 

  73. K. Naz, J.K. Khan, M. Khalid, M.S. Akhtar, Z.A. Gilani, H.M.N.H.K. Asghar et al., Mater. Chem. Phys. 285, 6091 (2022)

    Article  Google Scholar 

  74. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  CAS  Google Scholar 

  75. K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801 (2007)

    Article  CAS  Google Scholar 

  76. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. Condens. Matter. 14, 3221 (2002)

    Article  CAS  Google Scholar 

  77. K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  78. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  79. I. Sadiq, S. Naseem, M.N. Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Prog. Nat. Sci. Mater. Int. 25, 419 (2015)

    Article  CAS  Google Scholar 

  80. M.B. Shelar, P.A. Jadhav, S.S. Chougule, M.M. Mallapur, B.K. Chougule, J. Alloy. Compd. 476(1), 760 (2009)

    Article  CAS  Google Scholar 

  81. P. Chavan, L.R. Naik, Phys. Status Solidi A 214, 1700077 (2017)

    Article  Google Scholar 

  82. Y.Z. Wang, G.W. Qiao, X.D. Liu, B.Z. Ding, Z.Q. Hu, Mater. Lett. 17, 152 (1993)

    Article  CAS  Google Scholar 

  83. M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, J. Appl. Phys. 115, 203712 (2014)

    Article  Google Scholar 

  84. S. Hcini, S. Khadhraoui, A. Triki, S. Zemni, M. Boudard, M. Oumezzine, J. Supercond. Nov. Magn. 27, 195 (2013)

    Article  Google Scholar 

  85. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. 28, 1258 (2017)

    Article  CAS  Google Scholar 

  86. A. Sutka, S. Lagzdina, G. Mezinskis, A. Pludons, I. Vitina, L. Timma, I.O.P. Conf, Ser. Mater. Sci. Eng. 25, 012019 (2011)

    Google Scholar 

  87. N. Hamdaoui, Y.A. Kalandaragh, M. Khlifi, L. Beji, J. Alloys Compd. 803, 964 (2019)

    Article  CAS  Google Scholar 

  88. A. Ghosh, A. Pan, Phys. Rev. Lett. 84, 2188 (2000)

    Article  CAS  Google Scholar 

  89. S. Summerfield, Philos. Mag. Part B 52, 22 (1985)

    Article  Google Scholar 

  90. P.S. Raghvendra, O. Parkash, D. Kuma, Phys. Rev. B 84, 174306 (2011)

    Article  Google Scholar 

  91. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/22494).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their participation in the conception, analysis, design, writing, and revision of the article, and that they have read and endorsed the final manuscript.

Corresponding author

Correspondence to Mohamed Lamjed Bouazizi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazizi, M.L., Hcini, S., Khirouni, K. et al. Impact of calcination temperature on the structural, electrical, and dielectric properties of sol–gel synthesized Ni0.6Mg0.2Co0.2FeCrO4 spinel ferrites. J Mater Sci: Mater Electron 34, 1673 (2023). https://doi.org/10.1007/s10854-023-11048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11048-8

Navigation