Skip to main content
Log in

Anticounterfeiting application of Bi4TaO8Cl: Yb3+/Er3+ nano-phosphor designed by molten salt method for dual-mode upconversion luminescence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, upconversion luminescent materials doped with rare-earth ions have been widely used in anti-counterfeiting applications. However, in practical applications, single-mode photoluminescence is difficult to meet the increasingly complex anti-counterfeiting requirements of today’s society. In this article, dual-mode-excited, dual-color emitting Yb3+/Er3+ co-doped Bi4TaO8Cl nano-phosphor has been successfully synthesized via the one-step molten salt method. Bi4TaO8Cl: Yb3+/Er3+ nano-phosphor can emit green and red luminescence under 980 nm excitation, and the emission color changes from green to red by controlling the dopant concentration; whereas under 1550 nm excitation, it is mainly a single band red emission. The multicolor emission improves the security of multimode anticounterfeiting. The possible UC mechanisms were investigated under different excitation light sources at 980 and 1550 nm. Meanwhile, the anti-counterfeiting properties of the prepared nano-phosphor were evaluated according to the luminous intensity ratio of red and green light. The results demonstrate that Bi4TaO8Cl: Yb3+/Er3+ nano-phosphor will be expected to have excellent applications in the field of multimode anticounterfeiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. K. Muthamma, D. Sunil, P. Shetty, Carbon dots as emerging luminophores in security inks for anti-counterfeit applications - an up-to-date review. Appl. Mater. Today 23, 101050 (2021)

    Article  Google Scholar 

  2. W. Zhang, F. Zuo, Research progress of upconversion luminescent materials in different anti-counterfeiting fields. Fine Chem. 38, 2450–2457 (2021)

    Google Scholar 

  3. M. Shang, L. Yang, D. Liu, Y. Zhong, A review of anti-counterfeiting technology based on intelligent materials. J. Funct. Mater. 50, 04056–04062 (2019)

    CAS  Google Scholar 

  4. C. Zhang, Y. Li, K. Shao, J. Lin, K. Wang, Pan Luminescence Property of the Multicolor Persistent luminescence materials for dynamic anti-counterfeiting applications. J. Inorg. Mater. 36, 1256–1262 (2021)

    Article  Google Scholar 

  5. M. Zhang, M. Jia, T. Liang et al., A novel differential display material: K3LuSi2O7: Tb3+/Bi3+ phosphor with thermal response, time resolution and luminescence color for optical anti-counterfeiting. J. Colloid Interface Sci. 608, 758–767 (2022)

    Article  CAS  Google Scholar 

  6. X. Chen, Q. Wang, X.-J. Wang, J. Li, Xu Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications. Sci. Rep. 11, 5841 (2021)

    Article  CAS  Google Scholar 

  7. C. Li, X. Liu, Y. Han et al., Ultra-stable anti-counterfeiting materials inspired by water stains. Cell Rep. Phys. Sci. 2, 100571 (2021)

    Article  Google Scholar 

  8. T. Xia, W. Cao, Y. Cui, Y. Yang, Qian Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting. Opto-Electronic Adv. 4, 200063 (2021)

    Article  CAS  Google Scholar 

  9. X. Fan, L. Gu, Y. Hu, Zhu wearing an organic “coat” on nanocrystals of LaF3:Eu3+ to generate dynamic luminescence for optical anti-counterfeit. Adv. Powder Technol. 32, 2645–2653 (2021)

    Article  CAS  Google Scholar 

  10. X. Zhang, W. Yao, X. Zhou et al., Holographic polymer nanocomposites with simultaneously boosted diffraction efficiency and upconversion photoluminescence composites. Sci. Technol. 181, 107705 (2019)

    CAS  Google Scholar 

  11. S.-M. Jung, Multi-encryption watermarking technique using color image pixels. Int. J. Internet Broadcast. Commun. 14, 116–121 (2022)

    Google Scholar 

  12. S.M. Jeong, J. Yang, J.H. Pak, K. Seo, T. Lim, S. Ju, Real-time information-variable invisible barcode comprising freely deformable infrared-emitting yarns. ACS Appl. Mater. Interfaces 13, 41046–41055 (2021)

    Article  CAS  Google Scholar 

  13. X. Zhou, A. Hu, G. Li, L. Peng, Y. Xing, J. Yu, A robust radio-frequency fingerprint extraction scheme for practical device  Recognit. IEEE Internet Things J. 8, 11276–11289 (2021)

    Article  Google Scholar 

  14. Y. Li, C. Chen, M. Jin et al., External-field-dependent tunable emissions of Er3+-In3+ co-doped Cs2AgBiCl6 for applications in anti-counterfeiting. Mater. Today Phys. 27, 100830 (2022)

    Article  CAS  Google Scholar 

  15. Y. Li, C. Chen, M. Jin et al., Multi-mode excited Cs2NaBiCl6 based double Perovskite phosphor for anti-counterfeiting. J. Lumin. 247, 118915 (2022)

    Article  CAS  Google Scholar 

  16. M. Jin, Y. Wu, Z. Zhang, J. Xiang, Guo Excitation wavelength-dependent multi-color emitting phosphor Ba2GdTaO6: Mn4+, Er3+ for application in anti-counterfeiting. Opt. Laser Technol. 152, 108144 (2022)

    Article  CAS  Google Scholar 

  17. X. Bao, E.V. Ushakova, E. Liu et al., On-Off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption. Nanoscale. 11, 14250–14255 (2019)

    Article  CAS  Google Scholar 

  18. Z. Li, G. Wang, Y. Ye, B. Li, H. Li, B. Chen,  Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting  Angew. Chem. 58, 18025–18031 (2019)

    Article  CAS  Google Scholar 

  19. W. Wan, X. Han, Y. Zhou, F. Chen, X. Jing, S. Ye, Constructing perovskite-like oxide CsCa2Ta3O10: Yb, Er@Cs(PbxMn1-x) (ClyBr1-y)3 perovskite halide composites for five-dimensional anti-counterfeiting barcodes applications. Chem. Eng. J. 409, 128165 (2021)

    Article  CAS  Google Scholar 

  20. W. Tian, J. Zhang, J. Yu et al., Phototunable full-color emission of cellulose-based dynamic fluorescent materials advanced functional materials. Adv. Funct. Mater. 28, 1703548 (2018)

    Article  Google Scholar 

  21. Y. Fan, X.F. Jin, M.Y. Wang et al., Multimode dynamic photoluminescent anticounterfeiting and encryption based on a dynamic photoluminescent material. Chem. Eng. J. 393, 124799 (2020)

    Article  CAS  Google Scholar 

  22. M. Ding, B. Dong, Y. Lu et al., Energy Manipulation in lanthanide-doped core–shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting.  Adv. Mater. 32, 2002121 (2020)

    Article  CAS  Google Scholar 

  23. M. Erdem, S.B. Canturk, G. Eryurek, Upconversion Yb3+/Er3+:La2Ti2O7 phosphors for solid-state lighting and optical thermometry. Spectrochim. Acta Part A 270, 120854 (2022)

    Article  CAS  Google Scholar 

  24. J. Yan, C. Wang, H. Ma et al., Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B-Environmental 268, 118401 (2020)

    Article  CAS  Google Scholar 

  25. W. Wu, D. Chen, Y. Zhou, Z. Wan, Z. Ji,  Near-single-band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets. J. Alloys Compd. 682, 275–283 (2016)

    Article  CAS  Google Scholar 

  26. D. Chen, W. Xu, Y. Zhou, Y. Chen, Lanthanide doped BaTiO3-SrTiO3 solid-solution phosphors: structure, optical spectroscopy and upconverted temperature sensing behavior. J. Alloys Compd. 676, 215–223 (2016)

    Article  CAS  Google Scholar 

  27. S. Li, C. Wang, D. Li, Y. Xing, X. Zhang, Y. Liu, Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol. Chem. Eng. J. 435, 135133 (2022)

    Article  CAS  Google Scholar 

  28. Z. Feng, G. Li, X. Yuan, Z. Zhang, M. Tang, R. Zhang, Improved photocatalytic activity of Bi4TaO8Cl by Gd3+ doping. J. Am. Ceram. Soc. 102, 2390–2397 (2019)

    CAS  Google Scholar 

  29. Y. Wu, X. Zhao, Z. Zhang, J. Xiang, H. Suo, C. Guo, Dual-mode dichromatic SrBi4Ti4O15: Er3+ emitting phosphor for anti-counterfeiting application. Ceram. Int. 47, 15067–15072 (2021)

    Article  CAS  Google Scholar 

  30. Y. Wang, H. Xu, C. Shao, J. Cao, Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO4:Bi3+. Appl. Surf. Sci. 392, 649–657 (2017)

    Article  CAS  Google Scholar 

  31. B.H. Toby, A graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  CAS  Google Scholar 

  32. A. Nakada, A. Saeki, M. Higashi, H. Kageyama, R. Abe, Two-step synthesis of Sillen-Aurivillius type oxychlorides to enhance their photocatalytic activity for visible-light-induced water splitting. J. Mater. Chem. A 6, 10909–10917 (2018)

    Article  CAS  Google Scholar 

  33. D. Wei, Y. Huang, Seo Eu3+-doped Bi7O5F11 microplates with simultaneous luminescence and improved photocatalysis. APL Mater. 8, 081109 (2020)

    Article  CAS  Google Scholar 

  34. T. Wang, T. Xiao, Y. Fan et al., Abnormally heat-enhanced yb excited state lifetimes in Bi7F11O5 nanocrystals and the potential applications in lifetime luminescence nanothermometry. J. Mater. Chem. C 7, 13811–13817 (2019)

    Article  CAS  Google Scholar 

  35. S.S.M. Bhat, N.G. Sundaram, Efficient visible light photocatalysis of Bi4TaO8Cl nanoparticles synthesized by solution combustion technique. RSC Adv. 3, 14371–14378 (2013)

    Article  CAS  Google Scholar 

  36. Z. Wang, B. Cheng, L. Zhang, J. Yu, H. Tan, BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction. Solar RRL 6, 2100587 (2022)

    Article  CAS  Google Scholar 

  37. K. Wang, Y. Li, G. Zhang, J. Li, Wu 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: enhanced molecular oxygen activation and mechanism insight. Appl. Catal. B-Environmental. 240, 39–49 (2019)

    Article  Google Scholar 

  38. Z. Xu, Y. Li, Y. Song et al., Modification on upconversion luminescence of Er3+-Yb3+ co-doped BiOCl semiconductor nanosheets through interaction between nanohost and doping lanthanide. Spectrochim Acta A Mol Biomol Spectrosc. 177, 111–117 (2017)

    Article  CAS  Google Scholar 

  39. V. Singh, M. Seshadri, N. Singh et al., Optical characterization, absorption and upconversion luminescence in Er3+ and Er3+/Yb3+ doped In2O3 phosphor. J. Lumin. 176, 347–355 (2016)

    Article  CAS  Google Scholar 

  40. Y. Lou, Y. Chen, Z. Gu et al., Enhancement of photoluminescence and anomalous thermal quenching behavior of Er/Yb/Zr co-doped BaTiOceramic. Ceram. Int. 47, 18866–18874 (2021)

    Article  CAS  Google Scholar 

  41. J. Fu, X. Hu, F. Luan, G. Li, D. Guo, Optimum synthesis and properties of NaBiF4:Yb /Er upconversion nanoparticles. Ceram. Int. 45, 24365–24374 (2019)

    Article  CAS  Google Scholar 

  42. D. Shao, L. Lu, H. Sun, X. Zhang, Z. Bai, X. Mi, Analysis of influencing factors and changing laws on fluorescence lifetime of Er3+, Yb3+ co-doped Gd2O2S phosphor. J. Lumin. 252, 119377 (2022)

    Article  CAS  Google Scholar 

  43. H. Suo, C. Guo, T. Li, Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+. J. Phys. Chem. C 120, 2914–2924 (2016)

    Article  CAS  Google Scholar 

  44. Y. Zhao, G. Bai, Y. Hua, Q. Yang, L. Chen, S. Xu, Optical thermometry based on upconversion emission of Yb3+/Er3+ codoped bismuth titanate microcrystals. J. Lumin. 221, 117037 (2020)

    Article  CAS  Google Scholar 

  45. J.B. Zhao, L.L. Wu, Yb3+- and Er3+-doped Y2O3 microcrystals for upconversion photoluminescence and energy transfer with enhancements of near-ultraviolet emission. Rare Metals. 40, 123–127 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12264023), the National Natural Science Foundation of High and Foreign Experts Introduction Plan (No. G2022039008L), the Yunnan Major Scientific and Technological Projects (No. 202202AG050016), the Yunnan Fundamental Research Projects (No. 202301AT070459), and Yunnan XingDian Youth Talent Support Program (No. XDYC-QNRC-2022-0591). We also thank Shiyanjia Lab (https://www.shiyanjia.com) for the SEM test.

Funding

This work was supported by the National Natural Science Foundation of China (No. 12264023), the National Natural Science Foundation of High and Foreign Experts Introduction Plan (No. G2022039008L), the Yunnan Major Scientific and Technological Projects (No. 202202AG050016), the Yunnan Fundamental Research Projects (No. 202301AT070459), and Yunnan XingDian Youth Talent Support program (No. XDYC-QNRC-2022-0591).

Author information

Authors and Affiliations

Authors

Contributions

LX: Writing—original draft, conceptualization, methodology, software, investigation. YW: Methodology, formal analysis, writing— original draft. YL: Funding acquisition, supervision, validation, writing—review & editing. ZY and QW: Formal analysis. JH: Conceptualization. ZY and JQ: Supervision, validation. ZS: Funding acquisition, supervision.

Corresponding authors

Correspondence to Yongjin Li, Jin Han or Zhiguo Song.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3794.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wei, Y., Li, Y. et al. Anticounterfeiting application of Bi4TaO8Cl: Yb3+/Er3+ nano-phosphor designed by molten salt method for dual-mode upconversion luminescence. J Mater Sci: Mater Electron 34, 1564 (2023). https://doi.org/10.1007/s10854-023-10993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10993-8

Navigation