Skip to main content
Log in

Self-healing memristors based on SA/PVA/STB hydrogel

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Self-healing memristor devices were fabricated in this study using a cost-effective and structurally uncomplicated hydrogel consisting of polyvinylalcohol, sodium alginate, and sodium tetraborate. The device is environmentally friendly, biocompatible, possesses a good switching ratio (~ 50), stable memristor under long time run (> 2000 s), and is able to mimic the learning and forgetting functions. In addition, the device could complete the self-healing process at room temperature to rapidly recover its structure and the memristor function. Therefore, it shows great potential for bioelectronics, data storage, and data encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. M.K. Rahmani, S.A. Khan, H. Kim, M.U. Khan, J. Kim, J. Bae, M.H. Kang, Demonstration of high-stable bipolar resistive switching and bio-inspired synaptic characteristics using PEDOT:PSS-based memristor devices. Org. Electron. 114, 106730 (2023). https://doi.org/10.1016/j.orgel.2022.106730

    Article  CAS  Google Scholar 

  2. S. Goswami, D. Deb, A. Tempez, M. Chaigneau, S.P. Rath, M. Lal, R.S. Williams, Ariando, S. Goswami, T. Venkatesan, Organic memristors: nanometer-scale uniform conductance switching in molecular memristors. Adv. Mater. 32, 2070318 (2020). https://doi.org/10.1002/adma.202070318

    Article  Google Scholar 

  3. M.M.H. Brandon Sueoka, L. Tanim, Z. Williams, Y.Z. Xiao, K.Y. Seah, F. Cheong, Zhao, A synaptic memristor based on natural organic honey with neural facilitation. Org. Electron. 109, 106622 (2022). https://doi.org/10.1016/j.orgel.2022.106622

    Article  CAS  Google Scholar 

  4. K. Alhaj Ali et al., Memristive computational memory using memristor overwrite logic (MOL). IEEE Trans. Very Large Scale Integr. VLSI Syst. 28, 2370–2382 (2020). https://doi.org/10.1109/TVLSI.2020.3011522

    Article  Google Scholar 

  5. L. Tan Hongwei, Y. Gang, Y. Huali, P. Xiaohui, S. Liang, L. Jie, Shibing, Liu, Ming, Wu Yihong, Li Run-Wei, “Light-gated memristor with integrated logic and memory functionstan. ACS Nano. 11, 1936–0851 (2017). https://doi.org/10.1021/acsnano.7b05762

    Article  CAS  Google Scholar 

  6. C. Li, C.E. Graves, X. Sheng et al., Analog content-addressable memories with memristors. Nat. Commun. 11, 1638 (2020). https://doi.org/10.1038/s41467-020-15254-4

    Article  CAS  Google Scholar 

  7. H.-L. Park, T.-W. Lee, Organic and perovskite memristors for neuromorphic computing. Org. Electron. 98, 106301 (2021). https://doi.org/10.1016/j.orgel.2021.106301

    Article  CAS  Google Scholar 

  8. Q. Liao, Y. Wang, Z. Lv, Z. Xiong, J. Chen, G.P. Wang, S.-T. Han, Y. Zhou, Electronic synapses mimicked in bilayer organic-inorganic heterojunction based memristor. Org. Electron. 90, 106062 (2021). https://doi.org/10.1016/j.orgel.2021.106062

    Article  CAS  Google Scholar 

  9. S. Battistoni, V. Erokhin, S. Iannotta, Frequency driven organic memristive devices for neuromorphic short term and long term plasticity. Org. Electron. 65, 434–438 (2019). https://doi.org/10.1016/j.orgel.2018.11.033

    Article  CAS  Google Scholar 

  10. K. Krishnan, S. Vijayaraghavan, Study of current conduction mechanism and resistive switching stability in the PVdF-HFP-based memristor. J. Mater. Sci: Mater. Electron. 34, 211 (2023). https://doi.org/10.1007/s10854-022-09697-2

    Article  CAS  Google Scholar 

  11. P. Aabel, S. Sai Guru Srinivasan, R. Amiruddin et al., Bi-polar switching properties of FTO/CZTS/Ag device. J. Mater. Sci: Mater. Electron. 34, 601 (2023). https://doi.org/10.1007/s10854-023-10011-x

    Article  CAS  Google Scholar 

  12. N. Sharma, K. Singh, C.C. Tripathi et al., Resistive switching in neem (Azadirachta indica) thin film for a cost-effective and washable biomemristor. J. Mater. Sci: Mater. Electron. 34, 50 (2023). https://doi.org/10.1007/s10854-022-09484-z

    Article  CAS  Google Scholar 

  13. R. Akram, S. Natasha, Fahad et al., Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environ. Sci. Pollut Res. 26, 16923–16938 (2019). https://doi.org/10.1007/s11356-019-04998-2

    Article  CAS  Google Scholar 

  14. S. Li, J. Du, J. Lu, Bojing Lu, Fei Zhuge, Ruqi Yang, Yangdan Lu, Zhizhen Ye, Regulation of oxygen vacancy on behaviors of memristors based on amorphous ZnTiSnO films. J Mater. Chem. C (2022). https://doi.org/10.1039/D2TC02242G

    Article  Google Scholar 

  15. B. Lu, Y. Lu, H. Zhu, J. Zhang, J. Lu, Memristors based on amorphous znsno films. Mater. Lett. 249, 169–172 (2019). https://doi.org/10.1016/j.matlet.2019.04.086

    Article  CAS  Google Scholar 

  16. F. Wang, K. Chen, X. Yi, Y. Lin, S. Zhuang, A study on sodium alginate based memristor: from typical to self-rectifying. Mater. Lett. (2023). https://doi.org/10.1016/j.matlet.2023.134037

    Article  Google Scholar 

  17. Z. Hao, S. Chen, Z. Lin et al., Anticorrosive composite self-healing coating enabled by solar irradiation. Front. Chem. Sci. Eng. (2022). https://doi.org/10.1007/s11705-022-2147-1

    Article  Google Scholar 

  18. E. Choufi, Nadim and, S. Mustapha, B. Tehrani, Ali, G. Brian, An overview of self-healable polymers and recent advances in the field. Macromol. Rapid Commun. 43, 2200164 (2022). https://doi.org/10.1002/marc.202200164

    Article  CAS  Google Scholar 

  19. B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Self-healing polymers and composites. Annu. Rev. Mater. Sci. 40, 179–211 (2010). https://doi.org/10.1146/annurev-matsci-070909-104532

    Article  CAS  Google Scholar 

  20. F. Wei Ling, J. Mo, Q. Wang, Y. Liu, Q. Liu, Y. Yang, Y. Qiu, Huang, Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries. Mater. Today Phys. 20, 100458 (2021). https://doi.org/10.1016/j.mtphys.2021.100458

    Article  CAS  Google Scholar 

  21. C. Li, H. Guo, Z. Wu, P. Wang, D. Zhang, Y. Sun, Self-healable triboelectric nanogenerators: marriage between self-healing polymer chemistry and triboelectric devices. Adv. Funct. Mater. 33, 2208372 (2023). https://doi.org/10.1002/adfm.202208372

    Article  CAS  Google Scholar 

  22. F. Mo, Q. Li, G. Liang, Y. Zhao, D. Wang, Y. Huang, J. Wei, C. Zhi, A self-healing crease-free supramolecular all-polymer supercapacitor. Adv. Sci. 8, 2100072 (2021). https://doi.org/10.1002/advs.202100072

    Article  CAS  Google Scholar 

  23. G. Su, S. Yin, Y. Guo, Zhao, Fei and Guo, Quanquan and Zhang, Xinxing and Zhou, Tao and Yu, Guihua, “Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 8, 1795–1804 (2021). https://doi.org/10.1039/D1MH00085C

    Article  CAS  Google Scholar 

  24. J. Kang, J.B.H. Tok, Z. Bao, Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019). https://doi.org/10.1038/s41928-019-0235-0

    Article  Google Scholar 

  25. X. Geonoh Choe, R. Tang, K. Wang, Y.J. Wu, T.K. Jeong, S.H. An, L. Kim, Mi, Printing of self-healable gelatin conductors engineered for improving physical and electrical functions: exploring potential application in soft actuators and sensors. J. Ind. Eng. Chem. 116, 171–179 (2022). https://doi.org/10.1016/j.jiec.2022.09.005

    Article  CAS  Google Scholar 

  26. Y.-C. Chang, J.J.-C.H.Y.L. Huang, Y. Wei-Yun, A green strategy for developing a self-healing gelatin resistive memory device. ACS Appl. Polym. Mater. 2, 5318 (2020). https://doi.org/10.1021/acsapm.0c01119

    Article  CAS  Google Scholar 

  27. Y. Juan Zhang, Q. Wang, Y. Wei, M. Wang, D. Li, L. Li, Zhang, A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Int. J. Biol. Macromol. 219, 1216–1226 (2022). https://doi.org/10.1016/j.ijbiomac.2022.08.175

    Article  CAS  Google Scholar 

  28. P. Sheridan, F. Cai, C. Du et al., Sparse coding with memristor networks. Nat. Nanotech. 12, 784–789 (2017). https://doi.org/10.1038/nnano.2017.83

    Article  CAS  Google Scholar 

  29. Z. Li Zhang, D. Tang, F. Yao, Zhaoyuan, S.H.Q.-J. Sun, X.-G. Tang, Y.-P. Jiang, X. Guo, M. Huang, G. Zhong, J. Gao, Synaptic behaviors in flexible Au/WOx/Pt/mica memristor for neuromorphic computing system. Mater. Today Phys. 23, 100650 (2022). https://doi.org/10.1016/j.mtphys.2022.100650

    Article  CAS  Google Scholar 

  30. N. Croitoru, M. Lazarescu, C. Popescu, M. Telnic, L. Vescan, Ohmic and non-ohmic conduction in some amorphous semiconductors. J. Non-cryst. Solids (1972). https://doi.org/10.1016/0022-3093(72)90227-X

    Article  Google Scholar 

  31. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61205095, in part by the Shanghai Young College Teacher Develop funding schemes under Grant slg11006. We gratefully acknowledge Prof. B Cai and Prof. GJ Xu from USST for their help in this work.

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61205095, in part by the Shanghai Young College Teacher Develop funding schemes under Grant slg11006.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FW, KC; methodology, FW, XY, KC; investigation, FW, YS, YL, ZZ; experimental studies, FW, data curation, FW; writing—original draft preparation, FW; writing—review and editing, XY. YS, YL, ZZ; visualization, FW; supervision, KC; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kejian Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Chen, K., Yi, X. et al. Self-healing memristors based on SA/PVA/STB hydrogel. J Mater Sci: Mater Electron 34, 1520 (2023). https://doi.org/10.1007/s10854-023-10942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10942-5

Navigation