Skip to main content
Log in

Effect of annealing in unsaturated magnetic field on the magnetic properties of an amorphous alloy Fe77Ni1Si9B13

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The regularities of the influence on the magnetic properties of temperature and the strength of the longitudinal magnetic field, which is much less than the saturation field, during annealing of an amorphous soft magnetic alloy based on Fe were studied. The possibility of efficiency of such treatment in comparison with traditional annealing without a field is demonstrated. It is shown that the change in magnetic properties during annealing is not related to the crystallization processes of the amorphous alloy. Annealing in unsaturated field at a temperature of 410 °C showed the greatest efficiency in achieving the highest soft magnetic properties of the alloy (low coercive force Hc = 3 A/m, high maximum and low-field permeability µmax = 101,000, µ2 = 5019) among short-term treatments with a holding time of 10 min. The results obtained are discussed taking into account the processes of magnetic anisotropy induction and stress relaxation in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Z. Hou, P. Yan, B. Sun, H. Elshekh, B. Yan, Results Phys. 14, 102498 (2019). https://doi.org/10.1016/j.rinp.2019.102498

    Article  Google Scholar 

  2. K. Suzuki, H. Fujimori, K. Hashimoto, Amorphous Metals (Butterworths, London, 1983), p.300

    Google Scholar 

  3. Y.N. Starodubtsev, Physical Properties and Application of Soft Magnetic Materials (Goryachaya liniya - Telekom, Moscow, 2020), p.384

    Google Scholar 

  4. J. Degro, P. Vojtanik, J. Filipensky, P. Duhaj, Mater. Sci. Eng. B 14, 81 (1992). https://doi.org/10.1016/0921-5107(92)90333-90335

    Article  Google Scholar 

  5. J. Li, X.H. Lin, X.H. Wang, M. Tang, Adv. Mater. Res. 926–930, 137 (2014). https://doi.org/10.4028/www.scientific.net/AMR.926-930.137

    Article  CAS  Google Scholar 

  6. H. Li, A. He, A. Wang et al., J. Magn. Magn. Mater. 471, 110 (2019). https://doi.org/10.1016/j.jmmm.2018.09.072

    Article  CAS  Google Scholar 

  7. C.X. Wang, Z. Wu, X. Feng et al., Intermetallics 118, 106689 (2020). https://doi.org/10.1016/j.intermet.2019.106689

    Article  CAS  Google Scholar 

  8. F.E. Luborsky, in Amorphous Metallic Alloys. ed. by F.E. Luborsky (Butterworths, London, 1983), p.356

    Google Scholar 

  9. P. Marín, A. Hernando, Appl. Phys. Lett. 94, 122507 (2009). https://doi.org/10.1063/1.3091401

    Article  CAS  Google Scholar 

  10. M. Liu, Z. Wang, Y. Xu, IEEE Trans. Magn. 51, 2004704 (2015). https://doi.org/10.1109/TMAG.2015.2439295

    Article  CAS  Google Scholar 

  11. I. Škorvánek, J. Marcin, J. Turčanová, J. Kováč, P. Švec, J. Alloys Compds. 504S, S135 (2010). https://doi.org/10.1016/j.jallcom.2010.04.033

    Article  Google Scholar 

  12. D. Mishra, P. Saravanan, A. Perumal, A. Srinivasan, J. Appl. Phys. 109, 07A306 (2011). https://doi.org/10.1063/1.3533256

    Article  CAS  Google Scholar 

  13. M.J. Garcia-Prieto, E. Pina, A. Zhukov et al., Sens. Actuator A Phys. 81, 227 (2000). https://doi.org/10.1016/S0924-4247(99)00129-6

    Article  CAS  Google Scholar 

  14. C.K. Kim, I.H. Lee, Y.C. Chung, R.C. O’Handley, Mater. Sci. Eng. A 76, 211 (2000). https://doi.org/10.1016/S0921-5107(00)00450-5

    Article  Google Scholar 

  15. M. Vargaa, R. Vargaa, P. Vojtaníka et al., Acta Phys. Pol. 118, 804 (2010). https://doi.org/10.12693/APhysPolA.118.804

    Article  Google Scholar 

  16. O. Kohmoto, H. Fujishima, K. Shibata, Mater. Sci. Eng. 99, 53 (1988). https://doi.org/10.1016/0025-5416(88)90290-X

    Article  CAS  Google Scholar 

  17. O.I. Boriskin, D.I. Blagoveshchenskiy, VYu. Vvedenskiy, G.A. Nuzhdin, Chernye Metally 1045(1), 60 (2019)

    Google Scholar 

  18. VYu. Vvedenskiy, G.A. Nuzhdin, E.A. Shuvaeva, Kontrol’ Diagnostika 1, 51 (2013)

    Google Scholar 

  19. F.E. Luborsky, Amorphous Metallic Alloys (Butterworths, London, 1983), p.534

    Google Scholar 

  20. Y. Zhang, Y. Yang, Z. Wu et al., Intermetallics 134, 107200 (2021). https://doi.org/10.1016/j.intermet.2021.107200

    Article  CAS  Google Scholar 

  21. P.S. Mogilnikov, Izvestiya. Ferrous Metall. 59(11), 837 (2016). https://doi.org/10.17073/0368-0797-2016-11-837-839

    Article  CAS  Google Scholar 

  22. F. Luborsky, J. Walter, Mater. Sci. Eng. 35(2), 255 (1978). https://doi.org/10.1016/0025-5416(78)90127-1

    Article  CAS  Google Scholar 

  23. Y.H. Xu, Z.H. Zhu, L. Yin, J.L. Liu, Mater. Sci. Eng. 242, 012024 (2017). https://doi.org/10.1088/1757-899X/242/1/012024

    Article  Google Scholar 

  24. X.F. Liang, A.N. He, A.D. Wang et al., J. Alloys Compds. 694, 1260 (2017). https://doi.org/10.1016/j.jallcom.2016.10.107

    Article  CAS  Google Scholar 

  25. VYu. Vvedenskiy, I.B. Kekalo, Phys. Met. Metallogr. 81(1), 73 (1996)

    Google Scholar 

  26. A.M. Severino, A.D. Santos, E.P. Missell, J. Magn. Magn. Mater. 96, 167 (1991). https://doi.org/10.1016/0304-8853(91)90625-K

    Article  CAS  Google Scholar 

  27. VYu. Vvedenskiy, I.B. Kekalo, Phys. Met. Metallogr. 86(5), 80 (1998)

    Google Scholar 

  28. K. Suzuki, G. Herzer, Scr. Mater. 67, 548 (2012). https://doi.org/10.1016/j.scriptamat.2012.03.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M.V. Gorshenkov and I.V. Schetinin for their assistance in conducting the EDX analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. ET—Writing—Original draft; Investigation; Visualization; Formal analysis. VV—Writing—Review and Editing; Conceptualization; Supervision.

Corresponding author

Correspondence to Ekaterina N. Tokmakova.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokmakova, E.N., Vvedenskiy, V.Y. Effect of annealing in unsaturated magnetic field on the magnetic properties of an amorphous alloy Fe77Ni1Si9B13. J Mater Sci: Mater Electron 34, 1509 (2023). https://doi.org/10.1007/s10854-023-10931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10931-8

Navigation