Skip to main content
Log in

Terephthalic acid-driven organic–inorganic perovskite solar cells with enhanced humidity stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although hybrid perovskite solar cells (PSCs) have great potential in the field of photovoltaic, they undergo moisture-induced instability. Herein, we add the terephthalic acid (TPA) to lead iodide (PbI2) solution via two-step solution method to control the crystallization kinetics. It is found that adding of TPA led to decrease of grain boundaries and increase of grain size, both of which suppress charge recombination of active layers. Consequently, the PSC with TPA has a power conversion efficiency (PCE) of 17.07%, and could retain 85% of initial PCE when stored for 300 h at a relative humidity of 30%. The results indicate that the presence of TPA in perovskite film can greatly improve the performance of PSCs as well as its moisture stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the datasets and results obtained and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article.

References

  1. M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer, Y. Liu, I.W. Choi, S.J. Choi, Y. Jo, H.B. Kim, S.I. Mo, Y.K. Kim, H. Lee, N.G. An, S. Cho, W.R. Tress, S.M. Zakeeruddin, A. Hagfeldt, J.Y. Kim, M. Gratzel, D.S. Kim, Science. 375, 302–306 (2022)

    CAS  Google Scholar 

  2. L. Su, M. Mendez, M. Zhu, Y. Xiao, E. Palomares, J. Mater. Chem. A 9, 13979–13985 (2021)

    CAS  Google Scholar 

  3. National Renewable Energy Laboratory, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf

  4. M. Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith, Science. 338, 643–647 (2012)

    CAS  Google Scholar 

  5. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. Grice, A. Cimaroli, L. Guan, R. Ellingson, K. Zhu, X. Zhao, R. Xiong, Y. Yan, Nat. Energy. 2, 17018 (2017)

    CAS  Google Scholar 

  6. B. Wu, H. Nguyen, Z. Ku, G. Han, D. Giovanni, N. Mathews, H. Fan, Tze Sum, Adv. Energy Mater. 6, 1600551 (2016)

    Google Scholar 

  7. N. Tiep, Z. Ku, H. Fan, Adv. Energy Mater. 6, 1501420 (2016)

    Google Scholar 

  8. X. Li, F. Zhang, H. He, J.J. Berry, K. Zhu, T. Xu, Nature. 578, 555–558 (2020)

    CAS  Google Scholar 

  9. Y.H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom, A.J. Ramadan, S. Mahesh, J. Liu, R.D.J. Oliver, J. Lim, L. Aspitarte, K. Sharma, P.K. Madhu, A.B. Morales-Vilches, P.K. Nayak, S. Bai, F. Gao, C.R.M. Grovenor, M.B. Johnston, J.G. Labram, J.R. Durrant, J.M. Ball, B. Wenger, B. Stannowski, H.J. Snaith, Science 369, 96–102 (2020)

    CAS  Google Scholar 

  10. L. Zhu, Y. Xu, P. Zhang, J. Shi, Q. Meng, J. Mater. Chem. A 5, 20874–20881 (2017)

    CAS  Google Scholar 

  11. H. Zhang, J. Shi, L. Zhu, Y. Luo, D. Li, H. Wu, Q. Meng, Nano Energy. 43, 383–392 (2018)

    CAS  Google Scholar 

  12. L. Su, Y. Xiao, G. Han, L. Lu, H. Li, M. Zhu, J. Power Sourc. 426, 11–15 (2019)

    CAS  Google Scholar 

  13. L. Zhao, D. Luo, J. Wu, Q. Hu, W. Zhang, K. Chen, T. Liu, Y. Liu, Y. Zhang, F. Liu, T. Russell, H. Snaith, R. Zhu, Q. Gong, Adv. Funct. Mater. 26, 3508–3514 (2016)

    CAS  Google Scholar 

  14. L. Han, S. Cong, H. Yang, Y. Lou, H. Wang, J. Huang, J. Zhu, Y. Wu, Q. Chen, B. Zhang, L. Zhang, G. Zou, Solar RRL. 2, 1800054 (2018)

    Google Scholar 

  15. X. Hou, S. Huang, W. Yang, L. Pan, Z. Sun, X. Chen, ACS Appl. Mater. Interfac. 9, 35200–35208 (2017)

    CAS  Google Scholar 

  16. F. Zhang, J. Cong, Y. Li, J. Bergstrand, H. Liu, B. Cai, A. Hajian, Z. Yao, L. Wang, Y. Hao, X. Yang, J. Gardner, H. Ågren, J. Widengren, L. Kloo, L. Sun, Nano Energy. 53, 405–141 (2018)

    CAS  Google Scholar 

  17. J. Heo, S. Im, J. Noh, T. Mandal, C. Lim, J. Chang, Y. Lee, H. Kim, A. Sarkar, M. Nazeeruddin, M. Grätzel, S. Seok, Nat. Photon. 7, 486–491 (2013)

    CAS  Google Scholar 

  18. F. Li, J. Yuan, X. Ling, Y. Zhang, Y. Yang, S. Cheung, C. Ho, X. Gao, W. Ma, Adv. Funct. Mater. 28, 1706377 (2018)

    Google Scholar 

  19. S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong, A.M.H. Han, Adv. Energy Mater. 10, 1902492 (2019)

    Google Scholar 

  20. X. Li, M. Dar, C. Yi, J. Luo, M. Tschumi, S. Zakeeruddin, M. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 7, 703–711 (2015)

    CAS  Google Scholar 

  21. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. Angelis, M. Graetzel, Nat. Commun. 8, 15684–15691 (2017)

    CAS  Google Scholar 

  22. Y. Xiao, G. Han, Y. Chang, Y. Zhang, Y. Li, M. Li, J. Power Sour. 286, 118–123 (2015)

    CAS  Google Scholar 

  23. Y. Zhao, H. Tan, H. Yuan, Z. Yang, J. Fan, J. Kim, O. Voznyy, X. Gong, L. Quan, C. Tan, J. Hofkens, D. Yu, Q. Zhao, E. Sargent, Nat. Commun. 9, 1607–1616 (2018)

    Google Scholar 

  24. J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun, M. Du, Y. Cao, D. Yang, S. Liu, Energy Environ. Sci. 14, 3035–3043 (2021)

    CAS  Google Scholar 

  25. Y. Liu, Y. Zhang, X. Zhu, Z. Yang, W. Ke, J. Feng, X. Ren, K. Zhao, M. Liu, M.G. Kanatzidis, S.F. Liu, Sci. Adv. 7, 8844–8855 (2021)

    Google Scholar 

  26. L. Qiao, W.H. Fang, R. Long, O.V. Prezhdo, Angew Chem. Int. Ed. 59, 4684–4690 (2020)

    CAS  Google Scholar 

  27. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134, 17396–17399 (2012)

    CAS  Google Scholar 

  28. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science. 342, 344–347 (2013)

    CAS  Google Scholar 

  29. A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Chem. Lett. 41, 397–399 (2012)

    CAS  Google Scholar 

  30. Q.F. Dong, Y.J. Fang, Y.C. Shao, P. Mulligan, J. Qiu, L. Cao, J.S. Huang, Science 347, 967–970 (2015)

    CAS  Google Scholar 

  31. W.J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653–4658 (2014)

    CAS  Google Scholar 

  32. M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H.W. Choi, J. Lee, J.H. Bae, S.K. Kwak, D.S. Kim, C. Yang, Science. 369, 1615–1620 (2020)

    CAS  Google Scholar 

  33. G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon, S.I. mSeok, Science. 370, 108–112 (2020)

    CAS  Google Scholar 

  34. X. Meng, J. Zhou, J. Hou, X. Tao, S. Cheung, S. So, S. Yang, Adv. Mater. 30, 1706975 (2018)

    Google Scholar 

  35. E. Yenel, I. Deveci, J. Mater. Sci. 33, 11896–11905 (2022)

    CAS  Google Scholar 

  36. G. Tong, L.K. Ono, Y. Qi, Energy Technol. 8, 1900961 (2020)

    CAS  Google Scholar 

  37. T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen, S. Zhang, M. Cai, S. Dai, J. Zhang, J. Liu, Z. Zhou, X. Liu, H. Segawa, H. Tan, Q. Tang, J. Fang, Y. Li, L. Ding, Z. Ning, Y. Qi, Y. Zhang, L. Han, Nano-Micro Lett. 13, 152–169 (2021)

    CAS  Google Scholar 

  38. Y. Ahmed, B. Khan, M. Bilal Faheem, K. Huang, Y. Gao, J. Yang, J. Energy Chem. 67, 361–390 (2022)

    CAS  Google Scholar 

  39. D. Xin, S. Tie, X. Zheng, J. Zhu, W.H. Zhang, J. Energy Chem. 46, 173–177 (2020)

    Google Scholar 

  40. S. Yun, S. Ma, H. Kwon, K. Kim, G. Jang, H. Yang, J. Moon, Nano Energy. 59, 481–491 (2019)

    CAS  Google Scholar 

  41. Y. Deng, X. Li, R. Wang, Sol. Energy Mater. Sol. Cells. 230, 111242 (2021)

    CAS  Google Scholar 

  42. C. Zhang, Q. Luo, X. Deng, J. Zheng, W. Yang, X. Chen, S. Huang, Electro. Acta. 258, 1262–1272 (2017)

    CAS  Google Scholar 

  43. M. Li, B. Li, G. Gao, J. Tian, J. Mater. Chem. A 5, 21313–21319 (2017)

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Fund for Shanxi “1331 Project” Key Innovative Research Team, Shanxi Scholarship Council of China (2022-183) the National Science Foundation of Shanxi Province, China (Grant No.202203021222414), and the Higher Education Science and Technology Innovation Program of Shanxi Province, China (Grant No.2022L584).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Materials preparation, data collection and analysis were performed by LS, JP. The first draft of the manuscript was written by LS. Investigation, writing review and editing were conducted by LS. Methodology, supervision, resources, funding acquisition, project administration were provided by LS and JP. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lijun Su.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involved in human and animal rights

The manuscript was only submitted to the journal named as ‘‘Journal of Materials Science: Materials in Electronics.’’ The authors have certified that this manuscript was not submitted to any journal for simultaneous consideration. The authors declare that the submitted results in the manuscript are original and any part of them had not been published elsewhere in any form or language (partially or in full), and this study was not split up into several parts for increasing publication number. The authors endorsed that all results introduced in this study were presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. The research did not involve human participants and/or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Pan, J., An, Y. et al. Terephthalic acid-driven organic–inorganic perovskite solar cells with enhanced humidity stability. J Mater Sci: Mater Electron 34, 1460 (2023). https://doi.org/10.1007/s10854-023-10886-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10886-w

Navigation