Skip to main content
Log in

Growth, structural, optical, and thermal characterizations of l-serine-doped succinic acid (LSSA) crystals for nonlinear optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Progress in crystal growth and characterization methods lead to the exploration of novel materials with potential nonlinear optical properties. In this study, a nonlinear optical crystal of L-serine-doped succinic acid (LSSA) was grown via a slow evaporation process at 30 °C with the use of ethanol as a solvent.

The grown crystals were characterized using a variety of techniques, including single-crystal and powder X-ray diffraction (XRD) analysis, Fourier transforms infrared (FT-IR) spectroscopy, UV–Vis spectroscopy, Second harmonic generation (SHG) measurements, and Thermogravimetry and differential thermal (TG/DTA) analysis. According to XRD analysis, the produced LSSA samples crystallized in the P21 monoclinic space group. The existence of several functional groups and types of vibration in the sample was confirmed by FT-IR spectroscopy. UV spectroscopy has verified the crystals' wide transparency across the UV–visible range of electromagnetic radiation. The bandgap of LSSA has been calculated as 5.28 eV. The SHG test reveals the generation of second harmonic signals from the powdered samples. The TG/DTA experiments traced the thermal behavior of the as-grown LSSA crystals from 50 to 800 °C. The results revealed that the as-grown LSSA may be a potential nonlinear optical material for use in photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, S. Yu, Mater. Des. 140, 488–494 (2018). https://doi.org/10.1016/j.matdes.2017.12.004

    Article  CAS  Google Scholar 

  2. N. Sheen Kumar, S.L. Rayar, Ind. J. Phys. 96, 79–87 (2022). https://doi.org/10.1007/s12648-020-01946-6

    Article  CAS  Google Scholar 

  3. M. Manivannan, M. Jose, J. Electron. Mater. 50, 1221–1229 (2021). https://doi.org/10.1007/s11664-020-08664-z

    Article  CAS  Google Scholar 

  4. G.G. Muley, J. Electron. Mater. 43, 439–446 (2014). https://doi.org/10.1007/s11664-013-2874-7

    Article  CAS  Google Scholar 

  5. M. Rajkumar, A. Chandramohan, Mater. Lett. 181, 354–357 (2016). https://doi.org/10.1016/j.matlet.2016.04.191

    Article  CAS  Google Scholar 

  6. E.V. Alekseev, O. Felbinger, S. Wu, T. Malcherek, W. Depmeier, G. Modolo, T.M. Gesing, S.V. Krivovichev, E.V. Suleimanov, T.A. Gavrilova, L.D. Pokrovsky, A.M. Pugachev, N.V. Surovtsev, V.V. Atuchin, J. Sol. Stat. Chem. 204, 59–63 (2013). https://doi.org/10.1016/j.jssc.2013.04.038

    Article  CAS  Google Scholar 

  7. V.V. Atuchin, B.G. Bazarov, T.A. Gavrilova, V.G. Grossman, M.S. Molokeev, J. Alloy. Compd. 515, 119–122 (2012). https://doi.org/10.1016/j.jallcom.2011.11.115

    Article  CAS  Google Scholar 

  8. J. Chandrasekaran, P. Ilayabarathi, P. Maadeswaran, P. Mohamed Kutty, S. Pari, Opt. Commun. 285, 2096–2100 (2012). https://doi.org/10.1016/j.optcom.2011.12.063

    Article  CAS  Google Scholar 

  9. K. Xu, L. Cao, F. You, D. Zhong, T. Wang, Z. Yu, C. Hu, J. Tang, B. Teng, J. Cryst. Grow. 547, 125757 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125757

    Article  CAS  Google Scholar 

  10. C. Karnan, A.R. Prabakaran, M. Prabhaharan, G. Vintha, J. Electron. Mater. 48, 7915–7922 (2019). https://doi.org/10.1007/s11664-019-07630-8

    Article  CAS  Google Scholar 

  11. Z.S. Feng, Z.H. Kang, F.G. Wu, J.Y. Gao, Y. Jiang, H.Z. Zhang, Y.M. Andreev, G.V. Lanskii, V.V. Atuchin, T.A. Gavrilova, Opt. Exp. 16, 9978–9985 (2008). https://doi.org/10.1364/OE.16.009978

    Article  CAS  Google Scholar 

  12. ISh. Steinberg, A.V. Kirpichnikov, V.V. Atuchin, Opt. Mater. 78, 253–258 (2018). https://doi.org/10.1016/j.optmat.2017.11.025

    Article  CAS  Google Scholar 

  13. H. Merina Albert, C. Alosious Gonsago, J. Electron. Mater. 51, 4555–4564 (2022). https://doi.org/10.1007/s11664-022-09712-6

    Article  CAS  Google Scholar 

  14. J. Jeyaram, K. Varadharajan, B. Singaram, R. Rajendhran, J. Cryst. Grow. 486, 96–103 (2018). https://doi.org/10.1016/j.jcrysgro.2018.01.015

    Article  CAS  Google Scholar 

  15. K. Kamatchi, P. Umarani, T. Radhakrishnan, C. Ramachandra Raja, Optik 172, 674–679 (2018). https://doi.org/10.1016/j.ijleo.2018.07.054

    Article  CAS  Google Scholar 

  16. ISh. Steinberg, V.V. Atuchin, Mater. Chem. Phys. 253, 122956 (2020). https://doi.org/10.1016/j.matchemphys.2020.122956

    Article  CAS  Google Scholar 

  17. S.A. Bereznaya, Z.V. Korotchenko, R.A. Redkin, SYu. Sarkisov, V.N. Brudnyi, A.V. Kosobutsky, V.V. Atuchin, Infra Phys. Technol. 77, 100–103 (2016). https://doi.org/10.1016/j.infrared.2016.05.023

    Article  CAS  Google Scholar 

  18. R. Subhashini, S. Arjunan, B. Gunasekaran, J. Phys. Chem. Sol. 135, 109077 (2019). https://doi.org/10.1016/j.jpcs.2019.109077

    Article  CAS  Google Scholar 

  19. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, J. Mole. Struct. 1171(5), 915–925 (2018). https://doi.org/10.1016/j.molstruc.2017.07.027

    Article  CAS  Google Scholar 

  20. S.E. Allen Moses, S.M. Ravi Kumar, T.A. Hegde, J. Mater. Sci. 31, 21097–21107 (2020). https://doi.org/10.1007/s10854-020-04621-y

    Article  CAS  Google Scholar 

  21. S. Pal Rathee, D. Singh Ahlawat, S.A. Martin Britto Dhas, K.K. Maurya, B. Singh, I. Bdikin, Mater. Sci. Eng. B 264, 114927 (2021). https://doi.org/10.1016/j.mseb.2020.114927

    Article  CAS  Google Scholar 

  22. J. Madhavan, S. Aruna, A. Anuradha, D. Premanand, I. Vetha Potheher, K. Thamizharasan, P. Sagayaraj, Opt. Mater. 29, 1211–1216 (2007). https://doi.org/10.1016/j.optmat.2006.04.013

    Article  CAS  Google Scholar 

  23. M. Nageshwari, C. Rathika Thaya Kumari, G. Vinitha, S. Muthu, M. Lydia Caroline, Physica B 541, 32–42 (2018). https://doi.org/10.1016/j.physb.2018.04.020

    Article  CAS  Google Scholar 

  24. K. Rajesh, P. Praveen Kumar, A. Zamara, A. Thirugnanam, AIP Conf. Proc. 1536, 759–760 (2013). https://doi.org/10.1063/1.4810449

    Article  CAS  Google Scholar 

  25. K. Rajesh, P. Krishnan, A. Mani, K. Anandan, K. Gayathri, P. Devendran, Mater. Res. Inno. 24, 295–300 (2020). https://doi.org/10.1080/14328917.2019.1664178

    Article  CAS  Google Scholar 

  26. B.A. Zakharov, V.V. Ghazaryan, E.V. Boldyreva, A.M. Petrosyan, J. Mole. Struct. 1100(15), 255–263 (2015). https://doi.org/10.1016/j.molstruc.2015.07.051

    Article  CAS  Google Scholar 

  27. G.S. Aswathy, K.C. Bright, Opt. Mater. 124, 112048 (2022). https://doi.org/10.1016/j.optmat.2022.112048

    Article  CAS  Google Scholar 

  28. M. Parthasarathy, M. Anantharaja, R. Gopalakrishnan, J. Cryst. Grow. 340, 118–122 (2012). https://doi.org/10.1016/j.jcrysgro.2011.12.008

    Article  CAS  Google Scholar 

  29. E. Raju, P. Jayaprakash, T.A. Hegde, G. Vinitha, S. Kumaresan, J. Mater Sci. Mater. Electron. 33, 167–176 (2022). https://doi.org/10.1007/s10854-021-07282-7

    Article  CAS  Google Scholar 

  30. C. Alosious Gonsago, H.M. Albert, R. Umamaheswari, P. Malliga, A. Joseph Arul Pragasam, Proc. Ind. Natn. Sci. Acad. 79, 433–437 (2013)

    Google Scholar 

  31. D. Kalaivani, D. Arthi, A. Mukunthan, D. Jayaraman, V. Joseph, J. Cryst. Grow. 426, 135–140 (2015). https://doi.org/10.1016/j.jcrysgro.2015.05.030

    Article  CAS  Google Scholar 

  32. M. Nageshwari, C. Rathika Thaya Kumari, G. Vinitha, M. Peer Mohamed, S. Sudha, M. Lydia Caroline, J. Mole. Struct. 1155, 101–109 (2018). https://doi.org/10.1016/j.molstruc.2017.10.099

    Article  CAS  Google Scholar 

  33. P.S.L. Mageshwari, R. Priya, S. Krishnan, V. Joseph, S. Jerome Das, J. Therm. Anal. Calorim. 128, 29–37 (2017). https://doi.org/10.1007/s10973-016-5819-6

    Article  CAS  Google Scholar 

  34. D. Nayak, N. Vijayan, M. Kumari, Kiran, P. Vashishtha, S. Das, B. Sridhar, G. Gupta, R.P. Pant, Opt. Mater. 124, 112051 (2022). https://doi.org/10.1016/j.optmat.2022.112051

    Article  CAS  Google Scholar 

  35. H. Merina Albert, C. Alosious Gonsago, J. Mater. Sci. Mater. Electron. 33, 2970–2979 (2022). https://doi.org/10.1007/s10854-021-07495-w

    Article  CAS  Google Scholar 

  36. J.L. Leviel, G. Auvert, J.M. Savariault, Acta Cryst. B 37, 2185–2189 (1981). https://doi.org/10.1107/S0567740881008352

    Article  Google Scholar 

  37. J. Christina Rhoda, M. Giruba, S. Chellammal, AIP Conf. Proc. 2015, 030184 (2019). https://doi.org/10.1063/1.5113023

    Article  CAS  Google Scholar 

  38. V.V. Atuchin, O.D. Chimitova, T.A. Gavrilova, M.S. Molokeev, S.-J. Kim, N.V. Surovtsev, B.G. Bazarov, J. Cryst. Grow. 318, 683–686 (2011). https://doi.org/10.1016/j.jcrysgro.2010.09.076

    Article  CAS  Google Scholar 

  39. A.H. Reshak, Z.A. Alahmed, J. Bila, V.V. Atuchin, B.G. Bazarov, O.D. Chimitova, M.S. Molokeev, I.P. Prosvirin, A.P. Yelisseyev, J. Phys. Chem. C 120, 10559–10568 (2016). https://doi.org/10.1021/acs.jpcc.6b01489

    Article  CAS  Google Scholar 

  40. H.M. Albert, T. Lohitha, A. Karthik, C. Alosious Gonsago, V. Vinita, Mater. Today Proc. 47, 1030–1034 (2021). https://doi.org/10.1016/j.matpr.2021.06.124

    Article  CAS  Google Scholar 

  41. V.V. Atuchin, A.K. Subanakov, A.S. Aleksandrovsky, B.G. Bazarov, J.G. Bazarova, S.G. Dorzhieva, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, A.M. Pugachev, Y.L. Tushinova, A.P. Yelisseyev, Adv. Powd. Technol. 28, 1309–1315 (2017). https://doi.org/10.1016/j.apt.2017.02.019

    Article  CAS  Google Scholar 

  42. S. Janet Priyavathani, S. Stetlla Mary, S. Sahaya Jude Dhas, P. Gandhimathi, S. Usharani, Chem. Phys. Impact. 6, 100203 (2023). https://doi.org/10.1016/j.chphi.2023.100203

    Article  Google Scholar 

  43. R. Archana, S. Sudhahar, K. Sadayandi, M. Vidhya, S. Sagadevan, F. Mohammad, J. Podder, Chine. J. Phys. 67, 283–292 (2020). https://doi.org/10.1016/j.cjph.2020.07.010

    Article  CAS  Google Scholar 

  44. H. Ji, Z. Huang, Z. Xia, M.S. Molokeev, X. Jiang, Z. Lin, V.V. Atuchin, Dalt. Trans. 44, 7679–7686 (2015). https://doi.org/10.1039/C4DT03887H

    Article  CAS  Google Scholar 

  45. R.U. Mullai, R. Jothi, T. Suresh, E. Vinoth, S. Gopinath, G. Vinitha, K. Rao, S. Vetrivel, Emerg. Mater. Res. 9, 248–256 (2020). https://doi.org/10.1680/jemmr.17.00075

    Article  Google Scholar 

  46. J. Balaji, P. Srinivasan, S. Prabu, M. George, D. Sajan, J. Mole. Struct. 1207, 127750 (2020). https://doi.org/10.1016/j.molstruc.2020.127750

    Article  CAS  Google Scholar 

  47. M. Venkateshan, J. Suresh, Synth. J. Mole. Struct. 180, 826–838 (2019). https://doi.org/10.1016/j.molstruc.2018.12.071

    Article  CAS  Google Scholar 

  48. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, Mater. Sci. Eng. B. 176, 283–288 (2011). https://doi.org/10.1016/j.mseb.2010.10.003

    Article  CAS  Google Scholar 

  49. H.M. Albert, A. Pragasam, G. Bhagavannarayana, C. Gonsago, J. Therm. Anal. Calorim. 118, 333–338 (2014). https://doi.org/10.1007/s10973-014-4007-9

    Article  CAS  Google Scholar 

  50. S. Kurtz, T. Perry, J. Appl. Phys. 39, 3798–3813 (1968). https://doi.org/10.1063/1.1656857

    Article  CAS  Google Scholar 

  51. Y.G. Denisenko, E.I. Sal’nikova, S.A. Basova, M.S. Molokeev, A.S. Krylov, A.S. Aleksandrovsky, A.S. Oreshonkov, V.V. Atuchin, S.S. Volkova, N.A. Khritokhin, O.V. Andreev, Molecules 25, 1330 (2020). https://doi.org/10.3390/molecules25061330

    Article  CAS  Google Scholar 

  52. N.O. Azarapin, N.A. Khritokhin, V.V. Atuchin, A.A. Gubin, M.S. Molokeev, S. Mukherjee, O.V. Andreev, Crystals 13, 903 (2023). https://doi.org/10.3390/cryst13060903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HMA: Conceptualization, Data Curation, Supervision, and Validation. SSS: Formal analysis and Investigation, Methodology, and Software. CAG: Writing—original draft preparation, Visualization, and Writing—review and Editing.

Corresponding author

Correspondence to Helen Merina Albert.

Ethics declarations

Competing interests

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Research involved in human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, H.M., Saarwin, S.S. & Gonsago, C.A. Growth, structural, optical, and thermal characterizations of l-serine-doped succinic acid (LSSA) crystals for nonlinear optical applications. J Mater Sci: Mater Electron 34, 1407 (2023). https://doi.org/10.1007/s10854-023-10840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10840-w

Navigation