Skip to main content
Log in

Facile fabrication of CoAl2O4 based rGO nanohybrid as an environmental purifier for photodegradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 31 August 2023

This article has been updated

Abstract

The release of noxious organic pollutant from the textile industry into the water contents create a severe hazard to living and the aquatic component. The aluminate spinel family act as a potent photocatalyst to mineralize the organic dyes under the visible spectrum. But their poor photocatalytic efficiency can be enhanced with carbon-based material via composite strategies. In this study, the CoAl2O4/rGO nanocomposite is developed via the hydrothermal method. The various analytical tools employed to study the material characteristics. The photocatalytic efficiency is measured with the photomineralization of methylene blue (MB) under exposure to light of visible source. Their photocatalytic analysis suggests that CoAl2O4/rGO exhibited the 97.16% photocatalytic efficiency than a CoAl2O4 (77.51%) and rGO (88.01%). The EIS revealed that the nanohybrid exhibited 2.18 Ω than other synthesized materials. The greater photomineralization of MB is owing to the lower chances of electron (e) and holes (h+) recombination and the large interfacial area of the rGO nanosheet. The catalytic efficacy of spinel based rGO nanohybrid can be enhanced by tuning the morphology, crystallite size and band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

Change history

References

  1. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko et al., Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018). https://doi.org/10.1016/J.JMMM.2018.05.006

    Article  CAS  Google Scholar 

  2. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Baykal, H. Gungunes, E.L. Trukhanova et al., Strong correlation between Dy3 + concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. J. Ind. Eng. Chem. 90, 251–259 (2020). https://doi.org/10.1016/J.JIEC.2020.07.020

    Article  CAS  Google Scholar 

  3. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko et al., Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalt. Trans. 46, 9010–9021 (2017). https://doi.org/10.1039/C7DT01708A

    Article  CAS  Google Scholar 

  4. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova et al., Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater. Today Chem. 20, 100460 (2021). https://doi.org/10.1016/J.MTCHEM.2021.100460

    Article  CAS  Google Scholar 

  5. Y. Gu, B. Guo, Z. Yi, X. Wu, J. Zhang, H. Yang, Morphology modulation of hollow-shell ZnSn(OH)6 for enhanced photodegradation of methylene blue. Colloids Surf. Physicochem. Eng. Asp. 653, 129908 (2022). https://doi.org/10.1016/J.COLSURFA.2022.129908

    Article  CAS  Google Scholar 

  6. A. Patti, D. Acierno, Towards the sustainability of the plastic industry through biopolymers: properties and potential applications to the textiles world. Polymers 14, 692 (2022). https://doi.org/10.3390/POLYM14040692

    Article  CAS  Google Scholar 

  7. M. Saeed, I. Khan, M. Adeel, N. Akram, M. Muneer, Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New. J. Chem. 46, 2224–2231 (2022). https://doi.org/10.1039/D1NJ05633F

    Article  CAS  Google Scholar 

  8. D. Sharma, M. Faraz, D. Kumar, D. Takhar, B. Birajdar, N. Khare, Visible light activated V2O5/rGO nanocomposite for enhanced photodegradation of methylene blue dye and photoelectrochemical water splitting. Inorg. Chem. Commun. 142, 109657 (2022). https://doi.org/10.1016/J.INOCHE.2022.109657

    Article  CAS  Google Scholar 

  9. C. Jing, Y. Zhang, J. Zheng, S. Ge, J. Lin, D. Pan et al., In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69, 111–122 (2022). https://doi.org/10.1016/J.PARTIC.2021.11.013

    Article  CAS  Google Scholar 

  10. Y. Luo, A. Zheng, M. Xue, Y. Xie, S. Yu, Z. Yin et al., Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: kinetics and mechanisms. Ind. Crops Prod. 186, 115229 (2022). https://doi.org/10.1016/J.INDCROP.2022.115229

    Article  CAS  Google Scholar 

  11. M.F. Cárdenas-Alcaide, J.A. Godínez-Alemán, R.B. González-González, H.M.N. Iqbal, R. Parra-Saldívar, Environmental impact and mitigation of micro(nano)plastics pollution using green catalytic tools and green analytical methods. Green. Anal. Chem. 3, 100031 (2022). https://doi.org/10.1016/J.GREEAC.2022.100031

    Article  Google Scholar 

  12. I.A. Alsafari, K. Chaudhary, M.F. Warsi, A.Z. Warsi, M. Waqas, M. Hasan et al., A facile strategy to fabricate ternary WO3/CuO/rGO nano-composite for the enhanced photocatalytic degradation of multiple organic pollutants and antimicrobial activity. J. Alloys Compd. 938, 168537 (2023). https://doi.org/10.1016/J.JALLCOM.2022.168537

    Article  CAS  Google Scholar 

  13. H.M. Abo-Dief, O.K. Hussein, A. Ihsan, S.M. El-Bahy, A.M. Raslan, M. Shahid et al., Ternary metal oxide WO3.NiO.ZnO nanoparticles and their composite with CNTs for organic dye photocatalytic degradation. Ceram. Int. 48, 22228–22236 (2022). https://doi.org/10.1016/J.CERAMINT.2022.04.225

    Article  Google Scholar 

  14. A. Joseph, P.M. Aneesh, Efficient degradation of methylene blue: a comparative study using hydrothermally synthesised SnS2, WS2 and VS2 nanostructures. Mater. Res. Bull. 146, 111623 (2022). https://doi.org/10.1016/J.MATERRESBULL.2021.111623

    Article  CAS  Google Scholar 

  15. D. Paul, S. Maiti, D.P. Sethi, S. Neogi, Bi-functional NiO-ZnO nanocomposite: synthesis, characterization, antibacterial and photo assisted degradation study. Adv. Powder Technol. 32, 131–143 (2021). https://doi.org/10.1016/J.APT.2020.11.022

    Article  CAS  Google Scholar 

  16. G. Panthi, M. Park, Electrospun carbon nanofibers decorated with Ag3PO4 nanoparticles: visible-light-driven photocatalyst for the photodegradation of methylene blue. Photochem 1, 345–57 (2021). https://doi.org/10.3390/PHOTOCHEM1030022

    Article  Google Scholar 

  17. P. Raizada, A. Sudhaik, S. Patial, V. Hasija, A.A. Parwaz Khan, P. Singh et al., Engineering nanostructures of CuO-based photocatalysts for water treatment: current progress and future challenges. Arab. J. Chem. 13, 8424–8457 (2020). https://doi.org/10.1016/J.ARABJC.2020.06.031

    Article  CAS  Google Scholar 

  18. H. Liu, W. Peng, F. Xu, D. Li, Effect of inorganic ions on the photocatalytic treatment of methylene bluby reduced graphene oxide effect of inorganic ions on the photocatalytic treatment of methylene blue by reduced graphene oxide. Desalination Water Treat. (2019). https://doi.org/10.5004/dwt.2019.23547

    Article  Google Scholar 

  19. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur et al., Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/J.JALLCOM.2018.04.150

    Article  CAS  Google Scholar 

  20. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova et al., Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202 (2019). https://doi.org/10.3390/NANO9020202

    Article  CAS  Google Scholar 

  21. B.N. Nunes, L.F. Paula, Ã.A. Costa, A.E.H. Machado, L.G. Paterno, A.O.T. Patrocinio, Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. J. Photochem. Photobiol. C Photochem. Rev. 32, 1–20 (2017). https://doi.org/10.1016/J.JPHOTOCHEMREV.2017.05.002

    Article  CAS  Google Scholar 

  22. S. Gulati, K. Goyal, A. Arora, S. Kumar, M. Trivedi, S. Jain, Bismuth ferrite (BiFeO3) perovskite-based advanced nanomaterials with state-of-the-art photocatalytic performance in water clean-up. Environ. Sci. Water Res. Technol. 8, 1590–1618 (2022). https://doi.org/10.1039/D2EW00027J

    Article  CAS  Google Scholar 

  23. N. Taoufik, M. Sadiq, M. Abdennouri, S. Qourzal, A. Khataee, M. Sillanpää et al., Recent advances in the synthesis and environmental catalytic applications of layered double hydroxides-based materials for degradation of emerging pollutants through advanced oxidation processes. Mater. Res. Bull. 154, 111924 (2022). https://doi.org/10.1016/J.MATERRESBULL.2022.111924

    Article  CAS  Google Scholar 

  24. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/J.RSER.2017.08.020

    Article  CAS  Google Scholar 

  25. F.H. Abdullah, N.H.H.A. Bakar, M.A. Bakar, Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J. Hazard. Mater. 424, 127416 (2022). https://doi.org/10.1016/J.JHAZMAT.2021.127416

    Article  CAS  Google Scholar 

  26. L. Isac, C. Cazan, L. Andronic, A. Enesca, CuS-based nanostructures as catalysts for organic pollutants photodegradation. Catalysts 12, 1135 (2022). https://doi.org/10.3390/CATAL12101135

    Article  CAS  Google Scholar 

  27. T. Morikawa, S. Sato, K. Sekizawa, T.M. Suzuki, T. Arai, Solar-driven co2reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 55, 933–943 (2022)

    Article  CAS  Google Scholar 

  28. M. Tayebi, B.K. Lee, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy Rev. 111, 332–343 (2019). https://doi.org/10.1016/J.RSER.2019.05.030

    Article  CAS  Google Scholar 

  29. S.F. Ng, J.J. Foo, W.J. Ong, Solar-powered chemistry, Engineering low-dimensional carbon nitride-based nanostructures for selective CO2 conversion to C1 < span class=’icomoon’>? C2 products. InfoMat 4, e12279 (2022)

    Article  CAS  Google Scholar 

  30. C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting—materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K

    Article  CAS  Google Scholar 

  31. F.F. Wang, Q. Li, D.S. Xu, Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 7, 1700529 (2017). https://doi.org/10.1002/AENM.201700529

    Article  Google Scholar 

  32. N. Perumal, P. Selvaraj, H. Venkatesan, A.M.S. Elizabeth, R. Yuvaraj, R.Y.N. Pandian et al., Enhanced UV-irradiated photocatalytic degradation of malachite green by porous WO3 decorated on 2D graphene sheet. Appl. Biochem. Biotechnol. (2022). https://doi.org/10.1007/S12010-022-03901-Z/TABLES/1

    Article  Google Scholar 

  33. T. Liu, B. Liu, L. Yang, X. Ma, H. Li, S. Yin et al., RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B Environ. 204, 593–601 (2017). https://doi.org/10.1016/J.APCATB.2016.12.011

    Article  CAS  Google Scholar 

  34. X. Shen, Y. Zhang, G. Duoerkun, Z. Shi, J. Liu, Z. Chen et al., Vis-NIR light-responsive photocatalytic activity of C3N4 – ag – Ag2O heterojunction-decorated carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst. ChemCatChem 11, 1362–1373 (2019). https://doi.org/10.1002/CCTC.201801805

    Article  CAS  Google Scholar 

  35. H. Liang, X. Tai, Z. Du, Y. Yin, Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater. Opt. Mater. (Amst) 100, 109674 (2020). https://doi.org/10.1016/J.OPTMAT.2020.109674

    Article  CAS  Google Scholar 

  36. I.Y. Habib, J. Burhan, F. Jaladi, C.M. Lim, A. Usman, N.T.R.N. Kumara et al., Effect of Cr doping in CeO2 nanostructures on photocatalysis and H2O2 assisted methylene blue dye degradation. Catal. Today 375, 506–513 (2021). https://doi.org/10.1016/J.CATTOD.2020.04.008

    Article  CAS  Google Scholar 

  37. D. Saha, M.M. Desipio, T.J. Hoinkis, E.J. Smeltz, R. Thorpe, D.K. Hensley et al., Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: an insight into reaction intermediates. J. Environ. Chem. Eng. 6, 4927–4936 (2018). https://doi.org/10.1016/J.JECE.2018.07.030

    Article  CAS  Google Scholar 

  38. Y. Chen, J. Ma, D. Li, C. Zhu, W. Zhang, C. Miao, LaMnO3 nanocomposite double network hydrogel electrodes with enhanced electrochemical and mechanical performance for flexible supercapacitors. J. Alloys Compd. 888, 161555 (2021). https://doi.org/10.1016/J.JALLCOM.2021.161555

    Article  CAS  Google Scholar 

  39. M. Zhang, L. Wang, T. Zeng, Q. Shang, H. Zhou, Z. Pan et al., Two pure MOF-photocatalysts readily prepared for the degradation of methylene blue dye under visible light. Dalt. Trans. 47, 4251–4258 (2018). https://doi.org/10.1039/C8DT00156A

    Article  CAS  Google Scholar 

  40. E.A. Volnistem, R.D. Bini, G.S. Dias, L.F. Cótica, I.A. Santos, Photodegradation of methylene blue by mechanosynthesized BiFeO3 submicron particles. Ferroelectrics 534, 190–198 (2019). https://doi.org/10.1080/00150193.2018.1473675

    Article  CAS  Google Scholar 

  41. A.P. Bhat, P.R. Gogate, Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: a review on aliphatic and aromatic amines, dyes, and pesticides. J. Hazard. Mater. 403, 123657 (2021). https://doi.org/10.1016/J.JHAZMAT.2020.123657

    Article  CAS  Google Scholar 

  42. P. Kuang, M. Sayed, J. Fan, B. Cheng, J. Yu, 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 10, 1903802 (2020). https://doi.org/10.1002/AENM.201903802

    Article  CAS  Google Scholar 

  43. Q. Su, Y. Li, R. Hu, F. Song, S. Liu, C. Guo et al., Heterojunction photocatalysts based on 2D materials: the role of configuration. Adv. Sustain. Syst. 4, 2000130 (2020). https://doi.org/10.1002/ADSU.202000130

    Article  CAS  Google Scholar 

  44. X. Li, H. Zhao, J. Liang, Y. Luo, G. Chen, X. Shi et al., A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis. J. Mater. Chem. A 9, 6650–6670 (2021). https://doi.org/10.1039/D0TA09756J

    Article  CAS  Google Scholar 

  45. S. Trukhanov, V.G. Kostishyn, L.V. Panina, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−x Alx O19 (x ⩽ 1.2) at room temperature. JETP Lett. (2016). https://doi.org/10.1134/S0021364016020132

    Article  Google Scholar 

  46. Y. Wei, N. Yang, K. Huang, J. Wan, F. You, R. Yu et al., Steering hollow multishelled structures in photocatalysis: optimizing surface and mass transport. Adv. Mater. 32, 2002556 (2020). https://doi.org/10.1002/ADMA.202002556

    Article  CAS  Google Scholar 

  47. T. Tatarchuk, A. Shyichuk, I. Trawczyńska, I. Yaremiy, A.T. Pędziwiatr, P. Kurzydło et al., Spinel cobalt(II) ferrite-chromites as catalysts for H2O2 decomposition: synthesis, morphology, cation distribution and antistructure model of active centers formation. Ceram. Int. 46, 27517–27530 (2020). https://doi.org/10.1016/J.CERAMINT.2020.07.243

    Article  CAS  Google Scholar 

  48. M. Gil-Calvo, C. Jiménez-González, B. de Rivas, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl2O4 spinel-based catalysts for partial oxidation of methane. Appl. Catal. B Environ. 209, 128–138 (2017). https://doi.org/10.1016/J.APCATB.2017.02.063

    Article  CAS  Google Scholar 

  49. A. Morales-Marín, J.L. Ayastuy, U. Iriarte-Velasco, M.A. Gutiérrez-Ortiz, Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: effect of reduction temperature. Appl. Catal. B Environ. 244, 931–945 (2019). https://doi.org/10.1016/J.APCATB.2018.12.020

    Article  Google Scholar 

  50. Q. Cheng, X. Zhao, G. Yang, L. Mao, F. Liao, L. Chen et al., Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries. Energy Storage Mater. 41, 842–882 (2021). https://doi.org/10.1016/J.ENSM.2021.07.017

    Article  Google Scholar 

  51. M. John Abel, A. Pramothkumar, V. Archana, N. Senthilkumar, K. Jothivenkatachalam, J. Joseph Prince, Facile synthesis of solar light active spinel nickel manganite (NiMn2O4) by co-precipitation route for photocatalytic application. Res. Chem. Intermed. 467, 3509–3525 (2020). https://doi.org/10.1007/S11164-020-04159-Y

    Article  Google Scholar 

  52. A. Chaudhary, A. Mohammad, S.M. Mobin, Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B 227, 136–144 (2018). https://doi.org/10.1016/J.MSEB.2017.10.009

    Article  CAS  Google Scholar 

  53. J.A. Martin Mark, A. Venkatachalam, P. A, N.S.K.J. Jesuraj, Investigation on structural, optical and photocatalytic activity of CoMn2O4 nanoparticles prepared via simple co-precipitation method. Phys. B Condens. Matter. 601, 412349 (2021). https://doi.org/10.1016/J.PHYSB.2020.412349

    Article  CAS  Google Scholar 

  54. O.S. Yakovenko, L. Matzui ·, L.L. Yu, Vovchenko ·, V.V. Oliynyk ·, A.V. Trukhanov ·, S.V. Trukhanov · et al., Effect of magnetic fillers and their orientation on the electrodynamic properties of BaFe12−x Gax O19 (x = 0.1–1.2)-epoxy composites with carbon nanotubes within GHz range. Appl. Nanosci. 10, 4747–4752 (2020). https://doi.org/10.1007/s13204-020-01477-w

    Article  CAS  Google Scholar 

  55. N.A. Algarou, Y. Slimani, M.A. Almessiere, F.S. Alahmari, M.G. Vakhitov, D.S. Klygach et al., Magnetic and microwave properties of SrFe12O19/MCe0.04Fe1.96O4 (M = Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites. J. Mater. Res. Technol. 9, 5858–5870 (2020). https://doi.org/10.1016/J.JMRT.2020.03.113

    Article  CAS  Google Scholar 

  56. G.F. Samu, Ã. Veres, B. Endrődi, E. Varga, K. Rajeshwar, C. Janáky, Bandgap-engineered quaternary MxBi2 – xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: solution combustion synthesis, characterization, and photocatalysis. Appl. Catal. B Environ. 208, 148–160 (2017). https://doi.org/10.1016/J.APCATB.2017.02.036

    Article  CAS  Google Scholar 

  57. H.X. Wang, Q. Wang, K.G. Zhou, H.L. Zhang, Graphene in light: design, synthesis and applications of photo-active graphene and graphene-Like materials. Small 9, 1266–1283 (2013). https://doi.org/10.1002/SMLL.201203040

    Article  CAS  Google Scholar 

  58. Z. Zhang, P. Lin, Q. Liao, Z. Kang, H. Si, Y. Zhang, Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 31, 1806411 (2019). https://doi.org/10.1002/ADMA.201806411

    Article  Google Scholar 

  59. D. Zhao, X. Yang, C. Chen, X. Wang, Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2. J. Colloid Interface Sci. 398, 234–239 (2013). https://doi.org/10.1016/J.JCIS.2013.02.017

    Article  CAS  Google Scholar 

  60. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catal. Commun. 9, 1247–1253 (2008). https://doi.org/10.1016/J.CATCOM.2007.11.011

    Article  CAS  Google Scholar 

  61. M. Khan, M.E. Assal, M. Nawaz Tahir, M. Khan, M. Ashraf, M. Rafe Hatshan et al., Graphene/inorganic nanocomposites: evolving photocatalysts for solar energy conversion for environmental remediation. J. Saudi Chem. Soc. 26, 101544 (2022). https://doi.org/10.1016/J.JSCS.2022.101544

    Article  CAS  Google Scholar 

  62. N. Zhang, M.Q. Yang, Z.R. Tang, Y.J. Xu, Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8, 623–633 (2014). https://doi.org/10.1021/NN405242T/SUPPL_FILE/NN405242T_SI_001.PDF

    Article  CAS  Google Scholar 

  63. L. Song, Y. Pang, Y. Zheng, L. Ge, Hydrothermal synthesis of novel g-C3N4/BiOCl heterostructure nanodiscs for efficient visible light photodegradation of rhodamine B. Appl. Phys. A Mater. Sci. Process 123, 1–10 (2017). https://doi.org/10.1007/S00339-017-1091-2/FIGURES/10

    Article  Google Scholar 

  64. Z. Wei, S. Huang, X. Zhang, C. Lu, Y. He, Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites. J. Mater. Sci. Mater. Electron. 31, 5176–5186 (2020). https://doi.org/10.1007/S10854-020-03077-4/FIGURES/13

    Article  CAS  Google Scholar 

  65. A. Muthukrishnaraj, S. Vadivel, I.M. Joni, N. Balasubramanian, Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceram. Int. 41, 6164–6168 (2015). https://doi.org/10.1016/J.CERAMINT.2014.12.113

    Article  CAS  Google Scholar 

Download references

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (Grant No. PNURSP2023R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Deanship of Scientific Research at King Khalid University is greatly appreciated for funding this work under Grant No. R.G.P.2/67/44.

Author information

Authors and Affiliations

Authors

Contributions

MNS: Worked in the laboratory i.e. experimental work done and also. HMTF: wrote the manuscript, development or design of methodology; creation of models. FFA: Supervision. SRE, MSW, AGA-S: Review, editing of manuscript. Each author have knowledge about their submission and contributed work equally.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

Competing interests

The authors affirm that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the research presented in this study.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, F.F., Ejaz, S.R., Al-Sehemi, A.G. et al. Facile fabrication of CoAl2O4 based rGO nanohybrid as an environmental purifier for photodegradation of methylene blue. J Mater Sci: Mater Electron 34, 1323 (2023). https://doi.org/10.1007/s10854-023-10702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10702-5

Navigation