Skip to main content

Advertisement

Log in

Impact of ion induced changes on field emission in multi-walled carbon nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, we have investigated the effects of low-energy argon (Ar) ion irradiation on the structural properties of multi-walled carbon nanotubes (MWCNTs) and their impact on field-emission (FE). The energy of Ar+ ions was kept constant at ~ 1.2 keV, while the irradiation fluences were varied from 5 × 1015 to 1.6 × 1017 ions/cm2. The structural changes induced due to low-energy ion irradiation were studied by micro Raman spectroscopy. The effect of structural modifications of MWCNTs on their FE characteristics has also been investigated and found to be greatly influenced. After ion irradiation, the MWCNTs with open tips could perform better electron emitter with low turn-on and threshold fields of 1.3 and 3.2 V/µm, respectively. The mean field enhancement factor (β) increases from 3356 for a pristine sample to 9469 for ion-irradiated MWCNTs. Thus, the ion-irradiated MWCNTs show better FE properties, which could open up promising practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458

    Article  CAS  Google Scholar 

  2. C. Farrera, F. Torres Andón, N. Feliu, Carbon nanotubes as optical sensors in biomedicine. ACS Nano 11, 10637–10643 (2017). https://doi.org/10.1021/acsnano.7b06701

    Article  CAS  Google Scholar 

  3. C. Wagner, T. Blaudeck, P. Meszmer, S. Böttger, F. Fuchs, S. Hermann, J. Schuster, B. Wunderle, S.E. Schulz, Carbon nanotubes for mechanical sensor applications. Phys. Status Solidi A. 216, 1900584 (2019). https://doi.org/10.1002/pssa.201900584

    Article  CAS  Google Scholar 

  4. V. Amenta, K. Aschberger, Carbon nanotubes: potential medical applications and safety concerns. WIREs Nanomed. NanoBiotechnol. 7, 371–386 (2015). https://doi.org/10.1002/wnan.1317

    Article  CAS  Google Scholar 

  5. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 393 (2014). https://doi.org/10.1186/1556-276X-9-393

    Article  CAS  Google Scholar 

  6. S. Kruss, A.J. Hilmer, J. Zhang, N.F. Reuel, B. Mu, M.S. Strano, Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65, 1933–1950 (2013). https://doi.org/10.1016/j.addr.2013.07.015

    Article  CAS  Google Scholar 

  7. N.S. Lee, D.S. Chung, I.T. Han, J.H. Kang, Y.S. Choi, H.Y. Kim, S.H. Park, Y.W. Jin, W.K. Yi, M.J. Yun, J.E. Jung, C.J. Lee, J.H. You, S.H. Jo, C.G. Lee, J.M. Kim, Application of carbon nanotubes to field emission displays. Diam. Relat. Mater. 10, 265–270 (2001). https://doi.org/10.1016/S0925-9635(00)00478-7

    Article  CAS  Google Scholar 

  8. W.B. Choi, Y.W. Jin, H.Y. Kim, S.J. Lee, M.J. Yun, J.H. Kang, Y.S. Choi, N.S. Park, N.S. Lee, J.M. Kim, Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl. Phys. Lett. 78, 1547–1549 (2001). https://doi.org/10.1063/1.1349870

    Article  CAS  Google Scholar 

  9. A. Jha, U.K. Ghorai, D. Banerjee, S. Mukherjee, K.K. Chattopadhyay, Surface modification of amorphous carbon nanotubes with copper phthalocyanine leading to enhanced field emission. RSC Adv. 3, 1227–1234 (2012). https://doi.org/10.1039/C2RA21776G

    Article  Google Scholar 

  10. S.J. Kyung, J.B. Park, J.H. Lee, G.Y. Yeom, Improvement of field emission from screen-printed carbon nanotubes by He/(N2, Ar) atmospheric pressure plasma treatment. J. Appl. Phys. 100, 124303 (2006). https://doi.org/10.1063/1.2402966

    Article  CAS  Google Scholar 

  11. S.-J. Kyung, J.-B. Park, B.-J. Park, J.-H. Lee, G.-Y. Yeom, Improvement of electron field emission from carbon nanotubes by Ar neutral beam treatment. Carbon 46, 1316–1321 (2008). https://doi.org/10.1016/j.carbon.2008.05.009

    Article  CAS  Google Scholar 

  12. H. Sharma, V. Kaushik, P. Girdhar, V.N. Singh, A.K. Shukla, V.D. Vankar, Enhanced electron emission from titanium coated multiwalled carbon nanotubes. Thin Solid Films 518, 6915–6920 (2010). https://doi.org/10.1016/j.tsf.2010.07.043

    Article  CAS  Google Scholar 

  13. V. Kaushik, A.K. Shukla, V.D. Vankar, Improved electron field emission from metal grafted graphene composites. Carbon 62, 337–345 (2013). https://doi.org/10.1016/j.carbon.2013.06.016

    Article  CAS  Google Scholar 

  14. Z. Chen, D. den Engelsen, P.K. Bachmann, V. van Elsbergen, I. Koehler, J. Merikhi, D.U. Wiechert, High emission current density microwave-plasma-grown carbon nanotube arrays by postdepositional radio-frequency oxygen plasma treatment. Appl. Phys. Lett. 87, 243104 (2005). https://doi.org/10.1063/1.2140893

    Article  CAS  Google Scholar 

  15. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010). https://doi.org/10.1038/nchem.686

    Article  CAS  Google Scholar 

  16. H. Sharma, D.C. Agarwal, M. Sharma, A.K. Shukla, D.K. Avasthi, V.D. Vankar, Structure-modified stress dynamics and wetting characteristics of carbon nanotubes and multilayer graphene for electron field emission investigations. ACS Appl. Mater. Interfaces. 6, 12531–12540 (2014). https://doi.org/10.1021/am502405n

    Article  CAS  Google Scholar 

  17. M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, P.M. Ajayan, Coalescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000). https://doi.org/10.1126/science.288.5469.1226

    Article  CAS  Google Scholar 

  18. A.V. Krasheninnikov, K. Nordlund, Irradiation effects in carbon nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 216, 355–366 (2004). https://doi.org/10.1016/j.nimb.2003.11.061

    Article  CAS  Google Scholar 

  19. Y. Zhu, T. Yi, B. Zheng, L. Cao, The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Appl. Surf. Sci. 137, 83–90 (1999). https://doi.org/10.1016/S0169-4332(98)00372-9

    Article  CAS  Google Scholar 

  20. K. Yamamoto, T. Kamimura, K. Matsumoto, Electrical transport characteristic of carbon nanotube after mass-separated ultra-low-energy oxygen ion beams irradiation. Appl. Surf. Sci. 252, 5579–5582 (2006). https://doi.org/10.1016/j.apsusc.2005.12.141

    Article  CAS  Google Scholar 

  21. D.-H. Kim, C.-D. Kim, H.R. Lee, Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications. Carbon 42, 1807–1812 (2004). https://doi.org/10.1016/j.carbon.2004.03.015

    Article  CAS  Google Scholar 

  22. Q. Li, Z. Ni, J. Gong, D. Zhu, Z. Zhu, Enhanced field emission from nano-graphite coated carbon nanotubes. Nucl. Sci. Tech. 18, 276–281 (2007). https://doi.org/10.1016/S1001-8042(07)60061-X

    Article  CAS  Google Scholar 

  23. S. Acosta, J. Casanova Chafer, A. Sierra Castillo, E. Llobet, R. Snyders, J.-F. Colomer, M. Quintana, C. Ewels, C. Bittencourt, Low kinetic energy oxygen ion irradiation of vertically aligned carbon nanotubes. Appl. Sci. 9, 5342 (2019). https://doi.org/10.3390/app9245342

    Article  CAS  Google Scholar 

  24. J.-H. Deng, X.-G. Hou, L. Cheng, F.-J. Wang, B. Yu, G.-Z. Li, D.-J. Li, G.-A. Cheng, S. Wu, Irradiation damage determined field emission of ion irradiated carbon nanotubes. ACS Appl. Mater. Interfaces. 6, 5137–5143 (2014). https://doi.org/10.1021/am500370b

    Article  CAS  Google Scholar 

  25. S.K. Srivastava, A.K. Shukla, V.D. Vankar, V. Kumar, Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 492, 124–130 (2005). https://doi.org/10.1016/j.tsf.2005.07.283

    Article  CAS  Google Scholar 

  26. J. Ram, R.G. Singh, F. Singh, V. Chauhan, D. Gupta, V. Kumar, U. Kumar, B.C. Yadav, R. Kumar, Ion beam engineering in WO3-PEDOT: PSS hybrid nanocomposite thin films for gas sensing measurement at room temperature. Inorg. Chem. Commun. 119, 108000 (2020). https://doi.org/10.1016/j.inoche.2020.108000

    Article  CAS  Google Scholar 

  27. D. Gupta, V. Chauhan, S. Upadhyay, N. Koratkar, F. Singh, S. Kumar, A. Mahajan, R. Chandra, R. Kumar, Defects engineering and enhancement in optical and structural properties of 2D-MoS2 thin films by high energy ion beam irradiation. Mater. Chem. Phys. 276, 125422 (2022). https://doi.org/10.1016/j.matchemphys.2021.125422

    Article  CAS  Google Scholar 

  28. H. Sharma, D.C. Agarwal, M. Sharma, A.K. Shukla, D.K. Avasthi, V.D. Vankar, Tailoring of structural and electron emission properties of CNT walls and graphene layers using high-energy irradiation. J. Phys. Appl. Phys. 46, 315301 (2013). https://doi.org/10.1088/0022-3727/46/31/315301

    Article  CAS  Google Scholar 

  29. S. Eswara, J.-N. Audinot, B.E. Adib, M. Guennou, T. Wirtz, P. Philipp, Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation. Beilstein J. Nanotechnol. 9, 1951–1963 (2018). https://doi.org/10.3762/bjnano.9.186

    Article  CAS  Google Scholar 

  30. M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000). https://doi.org/10.1080/000187300413184

    Article  CAS  Google Scholar 

  31. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011). https://doi.org/10.1080/00018732.2011.582251

    Article  CAS  Google Scholar 

  32. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010). https://doi.org/10.1021/nl904286r

    Article  CAS  Google Scholar 

  33. U. Ritter, P. Scharff, C. Siegmund, O.P. Dmytrenko, N.P. Kulish, Y.I. Prylutskyy, N.M. Belyi, V.A. Gubanov, L.I. Komarova, S.V. Lizunova, V.G. Poroshin, V.V. Shlapatskaya, H. Bernas, Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 13, 2694–2700 (2006). https://doi.org/10.1016/j.carbon.2006.04.010

    Article  CAS  Google Scholar 

  34. U. Ritter, P. Scharff, O.P. Dmytrenko, N.P. Kulish, Yu.I. Prylutskyy, N.M. Belyi, V.A. Gubanov, L.A. Komarova, S.V. Lizunova, V.V. Shlapatskaya, H. Bernas, Radiation damage and Raman vibrational modes of single-walled carbon nanotubes. Chem. Phys. Lett. 447, 252–256 (2007). https://doi.org/10.1016/j.cplett.2007.09.010

    Article  CAS  Google Scholar 

  35. V. Kaushik, S. Pathak, H. Sharma, S. Sachdev, S. Anwer, C. Prakash, Impact of edge functionalization on electron field-emission characteristics of carbon nanotubes: a theoretical approach. Phys. B Condens. Matter. 625, 413491 (2022). https://doi.org/10.1016/j.physb.2021.413491

    Article  CAS  Google Scholar 

  36. D.K. Pathak, S. Mishra, A. Chaudhary, M. Tanwar, P. Yogi, P.R. Sagdeo, R. Kumar, Improved analytical framework for quantifying field emission from nanostructures. Mater. Chem. Phys. 245, 122686 (2020). https://doi.org/10.1016/j.matchemphys.2020.122686

    Article  CAS  Google Scholar 

  37. D.K. Pathak, M. Tanwar, C. Rani, S. Kandpal, T. Ghosh, P. Yogi, T. Anusuya, P. Mondal, A. Chaudhary, V. Kumar, R. Kumar, Quantifying size dependent electron emission from silicon nanowires array. SILICON 14, 5585–5594 (2022). https://doi.org/10.1007/s12633-021-01257-3

    Article  CAS  Google Scholar 

  38. Y. Song, J. Li, Q. Wu, C. Yi, H. Wu, Z. Chen, W. Ou-Yang, Study of film thickness effect on carbon nanotube based field emission devices. J. Alloys Compd. 816, 152648 (2020). https://doi.org/10.1016/j.jallcom.2019.152648

    Article  CAS  Google Scholar 

  39. A.S. Berdinsky, A.V. Shaporin, J.-B. Yoo, J.-H. Park, P.S. Alegaonkar, J.-H. Han, G.-H. Son, Field enhancement factor for an array of MWNTs in CNT paste. Appl. Phys. A. 83, 377–383 (2006). https://doi.org/10.1007/s00339-006-3482-7

    Article  CAS  Google Scholar 

  40. K.S. Hazra, N.A. Koratkar, D.S. Misra, Improved field emission from multiwall carbon nanotubes with nano-size defects produced by ultra-low energy ion bombardment. Carbon 49, 4760–4766 (2011). https://doi.org/10.1016/j.carbon.2011.06.085

    Article  CAS  Google Scholar 

  41. J.H. Park, P.S. Alegaonkar, D.Y. Kim, J.B. Yoo, Electrical ageing of carbon nanotube composite cathode layers. Diam. Relat. Mater. 17, 980–985 (2008). https://doi.org/10.1016/j.diamond.2008.02.043

    Article  CAS  Google Scholar 

  42. J.W. Nam, P.S. Alegaonkar, J.H. Park, J.B. Yoo, D.H. Choe, J.M. Kim, W.S. Kim, Field emission properties of plasma treated multiwalled carbon nanotube cathode layers. J. Vac. Sci. Technol. B Microelectron Nanometer Struct. Process. Meas. Phenom. 25, 306–311 (2007). https://doi.org/10.1116/1.2437154

    Article  CAS  Google Scholar 

  43. J.H. Park, P.S. Alegaonkar, S.Y. Jeon, J.B. Yoo, Carbon nanotube composite: dispersion routes and field emission parameters. Compos. Sci. Technol. 68, 753–759 (2008). https://doi.org/10.1016/j.compscitech.2007.08.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. S. is thankful to the IIT Delhi for providing help in carried out SEM and TEM.

Funding

There is no funding utilized for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HS. The first draft of the manuscript was written by VK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Himani Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Research data policy and data availability statements

The research data is available only a valid research based request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Kaushik, V., Pathak, S. et al. Impact of ion induced changes on field emission in multi-walled carbon nanotubes. J Mater Sci: Mater Electron 34, 1152 (2023). https://doi.org/10.1007/s10854-023-10533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10533-4

Navigation