Skip to main content
Log in

Study on oxygen vacancies in gallium oxide nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monoclinic-oriented gallium oxide (β-Ga2O3) has diverse applications in optoelectronic devices due to its wide bandgap and stable thermal properties. Moreover, nanostructured β-Ga2O3 exhibits high sensitivity in gas detection because oxygen vacancies in β-Ga2O3 transfer electrons with absorbed gas molecules, such as O2, CO, and CH4. However, gas sensors based on gallium oxide nanomaterials still face significant challenges in realizing high sensitivity and working at room temperature. This paper reported the growth of nanostructured β-Ga2O3 on sapphire substrates using chemical vapor deposition with gold as catalyst. Stoichiometry radio in β-Ga2O3 showed the absence of oxygen according to the energy dispersive spectrum result, which is consistent with the photoluminescence analysis. The excitation wavelength was 261.0 nm. Photoluminescence spectrum showed broad emission with a 467.1 nm wavelength peak associated with oxygen vacancies. The sensors were coated with β-Ga2O3 nanostructures on the interdigitated electrodes, making them sensitive to oxygen at room temperature and responsive to light. The sensing mechanism revealed the photogenerated electrons and holes transferred between oxygen vacancies in β-Ga2O3 and adsorbed gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, D. Shen, ACS Appl. Mater. Interfaces 8(6), 4185–4191 (2016). https://doi.org/10.1021/acsami.5b11956

    Article  CAS  Google Scholar 

  2. C. Wu, C. He, D. Guo, F. Zhang, W. Tang, Mater. Today Phys. 12, 100193 (2020). https://doi.org/10.1016/j.mtphys.2020.100193

    Article  Google Scholar 

  3. Y.F. Huang, K. Saito, T. Tanaka, Q.X. Guo, Appl. Phys. Lett. 119(6), 062107 (2021). https://doi.org/10.1063/5.0060066

    Article  CAS  Google Scholar 

  4. Y. Li, Z. Zhou, H. Pan, J. Chen, Y. Wang, Q. Qu, D. Zhang, M. Li, Y. Lu, Y. He, J. Mater. Res. Technol. 22, 2174–2185 (2023). https://doi.org/10.1016/j.jmrt.2022.12.086

    Article  CAS  Google Scholar 

  5. B. Alhalaili, R.J. Bunk, H. Mao, Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-020-78326-x

    Article  CAS  Google Scholar 

  6. W. Ruan, Z. Wu, J. Liu, J. Chen, Y. Shan, P. Song, Z. Jiang, R. Liu, G. Zhang, Z. Fang, J. Phys. D 55(28), 28400 (2022). https://doi.org/10.1088/1361-6463/ac66a5

    Article  Google Scholar 

  7. C. Sivakumar, G. Tsai, P. Chung, B. Balraj, Y. Lin, M. Ho, Nanomaterials 11(8), 2013 (2021). https://doi.org/10.3390/nano11082013

    Article  CAS  Google Scholar 

  8. H. Zhai, Z. Wu, Z. Fang, Ceram. Int. 48(17), 24213–24233 (2022). https://doi.org/10.1016/j.ceramint.2022.06.066

    Article  CAS  Google Scholar 

  9. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, Sens. Actuators B Chem. 129(2), 666–670 (2008). https://doi.org/10.1016/j.snb.2007.09.055

    Article  CAS  Google Scholar 

  10. A. Afzal, J. Materiomics 5(4), 542–557 (2019). https://doi.org/10.1016/j.jmat.2019.08.003

    Article  Google Scholar 

  11. J. Zhao, B. Qin, L. Liu, C. Liang, Y. Zhang, W. Yang, H. Wang, Sens. Actuators B Chem. 378, 133180 (2023). https://doi.org/10.1016/j.snb.2022.133180

    Article  CAS  Google Scholar 

  12. H. Lin, H. Gao, P. Gao, Appl. Phys. Lett. 110(4), 043101 (2017). https://doi.org/10.1063/1.4974213

    Article  CAS  Google Scholar 

  13. L.S. Reddy, Y. Ko, J. Yu, Nanoscale Res. Lett. 10(1), 364 (2015). https://doi.org/10.1186/s11671-015-1070-5

    Article  CAS  Google Scholar 

  14. D.Y. Guo, Z.P. Wu, P.G. Li, Q.J. Wang, M. Lei, L.H. Li, W.H. Tang, RSC Adv. 5(17), 12894–12898 (2015). https://doi.org/10.1039/c4ra13813a

    Article  CAS  Google Scholar 

  15. S. Sharma, M.K. Sunkara, J. Am. Chem. Soc. 124(41), 12288–12293 (2002). https://doi.org/10.1021/ja027086b

    Article  CAS  Google Scholar 

  16. C. Cao, Z. Chen, X. An, H. Zhu, J. Phys. Chem. C 112(1), 95–98 (2008). https://doi.org/10.1021/jp0738762

    Article  CAS  Google Scholar 

  17. F. Shi, X. Wei, J. Nanosci. Nanotechnol. 12(11), 8481–8486 (2012). https://doi.org/10.1166/jnn.2012.6679

    Article  CAS  Google Scholar 

  18. H.W. Kim, N.H. Kim, App. Surf. Sci. 233(1–4), 294–298 (2004). https://doi.org/10.1016/j.apsusc.2004.03.262

    Article  CAS  Google Scholar 

  19. S. Oh, J. Kim, S.J. Pearton, F. Ren, J. Kim, J. Mater. Chem. C 4(39), 9245–9250 (2016). https://doi.org/10.1039/C6TC02467J

    Article  CAS  Google Scholar 

  20. C. Huang, C. Yeh, New J. Chem. 34(1), 103–107 (2010). https://doi.org/10.1039/b9nj00392d

    Article  CAS  Google Scholar 

  21. A.V. Rodrigues, N.L. Sabino, J. Mater. Sci. Mater. Electron. 30(18), 16910–16916 (2019). https://doi.org/10.1007/s10854-019-01631-3

    Article  CAS  Google Scholar 

  22. B. Alhalaili, R. Vidu, M.S. Islam, Sensors 19(23), 5301 (2019). https://doi.org/10.3390/s19235301

    Article  CAS  Google Scholar 

  23. M. Kumar, V. Kumar, R. Singh, Nanoscale Res. Lett. 12(1), 1–10 (2017). https://doi.org/10.1186/s11671-017-1915-1

    Article  CAS  Google Scholar 

  24. R.K. Singhal, A. Samariya, Y.T. Xing, S. Kuma, S.N. Dolia, U.P. Deshpande, T. Shripathi, E. Saitovitch, J. Alloys Compd. 496(1–2), 324–330 (2010). https://doi.org/10.1016/j.jallcom.2010.02.005

    Article  CAS  Google Scholar 

  25. D. Roehrens, J. Brendt, D. Samuelis, M. Martin, J. Solid State Chem. 183(3), 532–541 (2010). https://doi.org/10.1016/j.jssc.2009.12.024

    Article  CAS  Google Scholar 

  26. S. Kumar, V. Kumar, T. Singh, A. Hähnel, R. Singh, J. Nanopart. Res. 16(1), 1–9 (2014). https://doi.org/10.1007/s11051-013-2189-x

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Postgraduate Education and Teaching Reform Project of Dalian Maritime University (No. YJG2022608).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, software, investigation, formal Analysis, writing—original draft were performed by AG. The conceptualization, funding acquisition, resources, supervision, writing—review & editing was written by YC. The data curation, visualization, investigation were performed by FZ. The resources were supported by TY, HY, LC, JC and XZ. Additionally, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi Cheng.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, A., Cheng, Y., Zhu, F. et al. Study on oxygen vacancies in gallium oxide nanostructures. J Mater Sci: Mater Electron 34, 1052 (2023). https://doi.org/10.1007/s10854-023-10462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10462-2

Navigation