Skip to main content

Advertisement

Log in

A study of DC and RF transconductance for different technologies of HEMT at low and high temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the measured effects of temperature on the DC and RF transconductance for several important HEMT technologies. Six different HEMT transistors were evaluated. Single- and double-heterojunction HEMTs, GaAs and GaN materials, virgin and multi-layer pHEMTs, and matched and pseudomorphic HEMTs are analyzed to enable a comparative and quantitative analysis for various transistor types. The temperature effects on the HEMT behavior vary remarkably with the considered transistor technology and working conditions. As a matter of fact, by changing the transistor and bias point, a higher temperature can yield an increase or decrease in the transconductance. It is worth noting that GaAs transistors have a bias point where the DC and RF transconductances are nearly invariant with temperature, owing to two opposing temperature effects canceling each other out, while no such bias condition was found for the GaN-based transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the authors.

References

  1. T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Jpn. J. Appl. Phys. 19, L225–L227 (1980)

    Article  CAS  Google Scholar 

  2. D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart, N.T. Linh, Two-dimensional electron gas MESFET structure. Electron. Lett. 116, 667–668 (1980)

    Article  Google Scholar 

  3. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60, 1764–1783 (2012)

    Article  CAS  Google Scholar 

  4. D.W. Runton, B. Trabert, J.B. Shealy, R. Vetury, History of GaN: high-power RF gallium nitride (GaN) from infancy to manufacturable process and beyond. IEEE Microw. Mag. 14, 82–93 (2013)

    Article  Google Scholar 

  5. S. Javaheri, A. Boochani, M. Babaeipour, S. Naderi, Electronic and optical properties of GaN under pressure: DFT calculations. Int. J. Mod. Phys. B 31, 1750261 (2017)

    Article  CAS  Google Scholar 

  6. N. Amani, M.R. Hantehzadeh, H. Akbari, A. Boochani, Electronic and optical properties of Fe doped GaN graphene based: using DFT. Computat. Condens. Matter. 28, e00569 (2021)

    Article  Google Scholar 

  7. M. Damann, A. Leuther, F. Benkhelifa, T. Feltgen, W. Jantz, Reliability and degradation mechanism of AlGaAs/InGaAs and InAlAs/InGaAs HEMTs. Phys. Status Solidi (a) 195, 81–86 (2003)

    Article  Google Scholar 

  8. D. Resca, A. Raffo, A. Santarelli, G. Vannini, F. Filicori, Scalable equivalent circuit FET model for MMIC design identified through FW-EM analyses. IEEE Trans. Microw. Theory Tech. 57, 245–253 (2009)

    Article  CAS  Google Scholar 

  9. G. Crupi, A. Raffo, V. Vadalà, G. Vannini, D.M.M.-P. Schreurs, A. Caddemi, Scalability of multifinger HEMT performance. IEEE Microw. Wirel. Compon. Lett. 30, 869–872 (2020)

    Article  Google Scholar 

  10. V.T. Vo, L. Krishnamurthy, Q. Sun, A.A. Rezazadeh, 3-D low-loss coplanar waveguide transmission lines in multilayer MMICs. IEEE Trans. Microw. Theory Tech. 54, 2864–2871 (2006)

    Article  Google Scholar 

  11. Q.H. Wang, T. Gokdemir, D. Budimir, U. Karacaoglu, A.A. Rezazadeh, I.D. Robertson, Fabrication and microwave characterisation of multilayer circuits for MMIC applications. IEE Proc Microw. Antennas Propag. 143, 225–232 (1996)

    Article  Google Scholar 

  12. M.A. Alim, A.A. Rezazadeh, Uniformity investigation of pHEMTs small-signal parameters for pre and post multilayer fabrication in 3D MMICs. Semicond Sci Technol. 35, 015013 (2020)

    Article  CAS  Google Scholar 

  13. A. Belache, A. Vanoverschelde, G. Salmer, M. Wolny, Experimental analysis of HEMT behavior under low-temperature conditions. IEEE Trans. Electron Dev. 38, 3–13 (1991)

    Article  Google Scholar 

  14. R.E. Anholt, S.E. Swirhun, Experimental investigation of the temperature dependence of GaAs FET equivalent circuits. IEEE Trans. Electron Dev. 39, 2029–2036 (1992)

    Article  Google Scholar 

  15. Z. Marinkovic, V. Markovic, Temperature-dependent models of low-noise microwave transistors based on neural networks. Int. J. RF Microw. Comput. Aided Eng. 15, 567–577 (2005)

    Article  Google Scholar 

  16. A. Caddemi, G. Crupi, N. Donato, Temperature effects on DC and small signal RF performance of AlGaAs/GaAs HEMTs. Microelectron. Reliab. 46, 169–173 (2006)

    Article  Google Scholar 

  17. J.A. Wilson, M. MacKenzie, S. MacFadzean, T. McMullen, S. Hamill, P. Stopford, M.C. Holland, C.R. Stanley, A.R. Long, Electron transport anisotropies in pseudomorphic InGaAs channel materials and their structural origin. Phys Status Solidi (a) 203(3), 628–637 (2006)

    Article  CAS  Google Scholar 

  18. M.A. Alim, A.A. Rezazadeh, Temperature-dependent DC and small-signal analysis of AlGaAs/InGaAs pHEMT for high frequency applications. IEEE Trans. Electron. Dev. 63, 1005–1012 (2016)

    Article  Google Scholar 

  19. G. Moschetti et al., Stability investigation of large gate-width metamorphic high electron-mobility transistors at cryogenic temperature. IEEE Trans. Microw. Theory Tech. 64, 3139–3150 (2016)

    Article  Google Scholar 

  20. Y.Y. Zhu, J.G. Ma, H.P. Fu, Q.J. Zhang, Q.F. Cheng, Q. Lin, Accurate modeling of pHEMT output current derivatives over a wide temperature range. Int. J. Numer. Model Electron. Netw. Dev. Field 30, e2185 (2017)

    Article  Google Scholar 

  21. M.A. Alim, A.A. Rezazadeh, G. Crupi, Experimental insight into the temperature effects on DC and microwave characteristics for a GaAs pHEMT in multilayer 3-D MMIC technology. Int. J. RF Microw. Comput. Aided Eng. 30, e22379 (2020)

    Article  Google Scholar 

  22. M.A. Alim, A.Z. Chowdhury, S. Islam, C. Gaquiere, G. Crupi, Temperature-sensitivity of two microwave HEMT devices: AlGaAs/GaAs vs AlGaN/GaN heterostructures. Electronics 10, 1115 (2021)

    Article  Google Scholar 

  23. C. Wang et al., Study of the temperature dependence of AlGaN/GaN HEMTs with oxygen plasma treatment. Phys. Status Solidi (a) 215(14), 1800092 (2018)

    Article  Google Scholar 

  24. M. Thorsell, K. Andersson, M. Fagerlind, M. Südow, P.-A. Nilsson, N. Rorsman, Thermal study of the high-frequency noise in GaN HEMTs. IEEE Trans. Microw. Theory Tech. 57, 19–26 (2009)

    Article  CAS  Google Scholar 

  25. A.M. Darwish, B.D. Huebschman, E. Viveiros, H.A. Hung, Dependence of GaN HEMT millimeter-wave performance on temperature. IEEE Trans. Microw. Theory Tech. 57, 3205–3211 (2009)

    Article  CAS  Google Scholar 

  26. A. Fontser, A. Pérez-Tomás, M. Placidi, P. Fernández-Martínez, N. Baron, S. Chenot, Y. Cordier, J.C. Moreno, P.M. Gammon, M.R. Jennings, Temperature dependence of Al/Ti-based Ohmic contact to GaN devices: HEMT and MOSFET. Microelectron. Eng. 88, 3140–3144 (2011)

    Article  Google Scholar 

  27. Z. Marinković et al., Neural approach for temperature dependent modeling of GaN HEMTs. Int. J. Numer. Model Electron. Netw. Dev. Field 28, 359–370 (2015)

    Article  Google Scholar 

  28. G. Crupi, A. Raffo, G. Avolio, D.M.M.-P. Schreurs, G. Vannini, A. Caddemi, Temperature influence on GaN HEMT equivalent circuit. IEEE Microw. Wireless Compon. Lett. 26, 813–815 (2016)

    Article  Google Scholar 

  29. G. Crupi, A. Raffo, V. Vadalà, G. Vannini, A. Caddemi, High-periphery GaN HEMT modeling up to 65 GHz and 200 °C. Solid-State Electron. 152, 11–16 (2019)

    Article  CAS  Google Scholar 

  30. Y. Chen et al., Temperature-dependent small signal performance of GaN-on-diamond HEMTs. Int. J. Numer. Model Electron. Netw. Dev. Field 33, e2620 (2020)

    Google Scholar 

  31. A. Majumdar, S. Chatterjee, S. Chatterjee, S.S. Chaudhari, D.R. Poddar, An ambient temperature dependent small signal model of GaN HEMT using method of curve fitting. Int. J. RF Microw. Comput.-Aided Eng. 30, e22434 (2020)

    Article  Google Scholar 

  32. A. Jarndal, S. Husain, M. Hashmi, Genetic algorithm initialized artificial neural network based temperature dependent small-signal modeling technique for GaN high electron mobility transistors. Int. J. RF Microw. Comput. Aided Eng. 31, e22542 (2021)

    Article  Google Scholar 

  33. H. Luo, Z. Zhong, W. Hu, Y. Guo, Analysis and modeling of the temperature-dependent nonlinearity of intrinsic capacitances in AlGaN/GaN HEMTs. IEEE Microw. Wireless Compon. Lett. 31, 373–376 (2021)

    Article  Google Scholar 

  34. M.A.K. Khan, M.A. Alim, C. Gaquiere, 2DEG transport properties over temperature for AlGaN/GaN HEMT and AlGaN/InGaN/GaN pHEMT. Microelectron. Eng. 238, 111508 (2021)

    Article  CAS  Google Scholar 

  35. A.Z. Chowdhury, M.A. Alim, S. Islam, C. Gaquiere, Estimation of channel temperature and thermal sensitivity for a 0.15 μm GaN HEMT. Microelectron. Eng. 247, 111595 (2021)

    Article  CAS  Google Scholar 

  36. M.W. Pospieszalski, Extremely low-noise amplification with cryogenic FETs and HFETs: 1970–2004. IEEE Microw. Mag. 6, 62–75 (2005)

    Article  Google Scholar 

  37. S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, A. Nanni, GaN-based robust low-noise amplifiers. IEEE Trans. Electron. Dev. 60, 3238–3248 (2013)

    Article  CAS  Google Scholar 

  38. A. Nalli, A. Raffo, G. Crupi, S. D’Angelo, D. Resca, F. Scappaviva, G. Salvo, A. Caddemi, G. Vannini, GaN HEMT noise model based on electromagnetic simulations. IEEE Trans. Microw. Theory Tech. 63, 2498–2508 (2015)

    Article  CAS  Google Scholar 

  39. G. Crupi, V. Vadalà, P. Colantonio, E. Cipriani, A. Caddemi, G. Vannini, D.M.M.-P. Schreurs, Empowering GaN HEMT models: the gateway for power amplifier design. Int. J. Numer. Model Electron. Netw. Dev. Field 30, e2125 (2017)

    Article  Google Scholar 

  40. D. Resca, A. Raffo, S. Di Falco, F. Scappaviva, V. Vadalà, G. Vannini, X-band GaN power amplifier for future generation SAR systems. IEEE Microw. Wirel. Compon. Lett. 24, 266–268 (2014)

    Article  Google Scholar 

  41. R. Giofrè, P. Colantonio, F. Costanzo, F. Vitobello, M. Lopez, L. Cabria, A 17.3–20.2-GHz GaN-Si MMIC balanced HPA for very high throughput satellites. IEEE Microw. Wirel. Comp. Lett. 31, 296–299 (2021)

    Article  Google Scholar 

  42. C. Ramella, V. Camarchia, A. Piacibello, M. Pirola, R. Quaglia, Watt-Level 21–25-GHz integrated Doherty power amplifier in GaAs technology. IEEE Microw. Wirel. Compon. Lett. 31, 505–508 (2021)

    Article  Google Scholar 

  43. M.A. Alim, A.A. Rezazadeh, Study of third-order intercepts and nonlinear distortion level for S-H GaAs HEMTs. Semicond. Sci. Technol. 35, 085001 (2020)

    Article  CAS  Google Scholar 

  44. M.A. Alim, A.A. Rezazadeh, Third-order intercepts and nonlinear distortion level investigation for pre and post multilayer pHEMTs. Solid State Electron. 169, 107809 (2020)

    Article  CAS  Google Scholar 

  45. M.A. Alim, A.A. Rezazadeh, C. Gaquiere, Thermal characterization of DC and small-signal parameters of 150 nm and 250 nm gate-length AlGaN/GaN HEMTs grown on a SiC substrate. Semicond. Sci. Technol. 30, 125005 (2015)

    Article  Google Scholar 

  46. M.A. Alim, M.A. Mayahsa, N. Haris, P.B.K. Kyabaggu, A.A. Rezazadeh, Device considerations and characterizations of pre and post fabricated GaAs based pHEMTs using multilayer 3-D MMIC technology. Semicond. Sci. Technol. 32, 055003 (2017)

    Article  Google Scholar 

  47. C.-H. Chen, R. Sadler, D. Wang, D. Hou, Y. Yang, W. Yau, W. Sutton, J. Shim, S. Wang, A. Duong, The causes of GaN HEMT bell-shaped transconductance degradation. Solid-State Electron. 126, 115–124 (2016)

    Article  CAS  Google Scholar 

  48. M.G. Ancona, J.P. Calame, D.J. Meyer, S. Rajan, B.P. Downey, Compositionally graded III-N HEMTs for improved linearity: a simulation study. IEEE Trans. Electron. Device 66, 2151–2157 (2019)

    Article  CAS  Google Scholar 

  49. K. Lee, Parasitic MESFET in (AlGa)As/GaAs modulation doped FETs and MODFET characterization. IEEE Trans. Electron. Dev. 31, 29–35 (1984)

    Article  Google Scholar 

  50. T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra, Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev. 52, 2117–2123 (2005)

    Article  CAS  Google Scholar 

  51. G. Meneghesso, F. Rampazzo, P. Kordos, G. Verzellesi, E. Zanoni, Current collapse and high-electric-field reliability of unpassivated GaN/AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev. 53, 2932–2941 (2006)

    Article  CAS  Google Scholar 

  52. S. Vitanov, V. Palankovski, S. Maroldt, R. Quay, S. Murad, T. Rödle, S. Selberherr, Physics-based modeling of GaN HEMTs. IEEE Trans. Electron. Dev. 59, 685–693 (2012)

    Article  CAS  Google Scholar 

  53. P. Wang, M. Mi, M. Zhang, J. Zhu, Y. Zhou, J. Liu, S. Liu, L. Yang, B. Hou, X. Ma, Y. Hao, High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications. Chin. Phys. B 31, 027103 (2022)

    Article  Google Scholar 

  54. G. Crupi, A. Raffo, Z. Marinković, G. Avolio, A. Caddemi, V. Marković, G. Vannini, D.M. Schreurs, An extensive experimental analysis of the kink effects in S22 and h21 for a GaN HEMT. IEEE Trans. Microw. Theory. Tech. 62, 513–520 (2014)

    Article  CAS  Google Scholar 

  55. A. Caddemi, G. Crupi, N. Donato, A robust and fast procedure for the determination of the small signal equivalent circuit of HEMTs. Microelectron. J. 35, 431–436 (2004)

    Article  Google Scholar 

  56. A. Jarndal, G. Kompa, A new small signal modeling approach applied to GaN devices. IEEE Trans. Microw. Theory Tech. 53, 3440–3448 (2005)

    Article  Google Scholar 

  57. G. Crupi, D.M.M.-P. Schreurs, A. Raffo, A. Caddemi, G. Vannini, A new millimeter wave small-signal modeling approach for pHEMTs accounting for the output conductance time delay. IEEE Trans. Microw. Theory Tech. 56, 741–746 (2008)

    Article  Google Scholar 

  58. M.A. Alim, A.A. Rezazadeh, C. Gaquiere, Temperature effect on DC and equivalent circuit parameters of 0.15-μm gate length GaN/SiC HEMT for microwave applications. IEEE Trans. Microw. Theory Tech. 64, 3483–3491 (2016)

    Article  Google Scholar 

  59. Y. Chen, Y. Xu, Y. Luo, C. Wang, Z. Wen, B. Yan, R. Xu, A reliable and efficient small-signal parameter extraction method for GaN HEMTs. Int. J. Numer. Model Electron. Netw. Dev. Field 33, e2540 (2020)

    Google Scholar 

  60. H. Xue, T. Razzak, S. Hwang, A. Coleman, S.H. Sohel, S. Rajan, A. Khan, W. Lu, Small signal analysis of ultra-wide bandgap Al0.7Ga0.3N channel MESFETs. Microelectron. Eng. 237, 111495 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MAA and GC contributed to conceptualization and methodology. MAA and AJ contributed to validation and investigation. MAA, AJ, and GC contributed to writing—original draft preparation. CG and GC contributed to writing—review and editing and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohammad Abdul Alim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alim, M.A., Jarndal, A., Gaquiere, C. et al. A study of DC and RF transconductance for different technologies of HEMT at low and high temperatures. J Mater Sci: Mater Electron 34, 892 (2023). https://doi.org/10.1007/s10854-023-10176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10176-5

Navigation